MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsinv2 Structured version   Visualization version   GIF version

Theorem lmodvsinv2 19239
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
lmodvsinv2.b 𝐵 = (Base‘𝑊)
lmodvsinv2.f 𝐹 = (Scalar‘𝑊)
lmodvsinv2.s · = ( ·𝑠𝑊)
lmodvsinv2.n 𝑁 = (invg𝑊)
lmodvsinv2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsinv2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))

Proof of Theorem lmodvsinv2
StepHypRef Expression
1 simp1 1131 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ LMod)
2 lmodgrp 19072 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ Grp)
4 simp3 1133 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑋𝐵)
5 lmodvsinv2.b . . . . . . 7 𝐵 = (Base‘𝑊)
6 eqid 2760 . . . . . . 7 (+g𝑊) = (+g𝑊)
7 eqid 2760 . . . . . . 7 (0g𝑊) = (0g𝑊)
8 lmodvsinv2.n . . . . . . 7 𝑁 = (invg𝑊)
95, 6, 7, 8grprinv 17670 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
103, 4, 9syl2anc 696 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
1110oveq2d 6829 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = (𝑅 · (0g𝑊)))
12 simp2 1132 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑅𝐾)
135, 8grpinvcl 17668 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
143, 4, 13syl2anc 696 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
15 lmodvsinv2.f . . . . . 6 𝐹 = (Scalar‘𝑊)
16 lmodvsinv2.s . . . . . 6 · = ( ·𝑠𝑊)
17 lmodvsinv2.k . . . . . 6 𝐾 = (Base‘𝐹)
185, 6, 15, 16, 17lmodvsdi 19088 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
191, 12, 4, 14, 18syl13anc 1479 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
2015, 16, 17, 7lmodvs0 19099 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
211, 12, 20syl2anc 696 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (0g𝑊)) = (0g𝑊))
2211, 19, 213eqtr3d 2802 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊))
235, 15, 16, 17lmodvscl 19082 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · 𝑋) ∈ 𝐵)
245, 15, 16, 17lmodvscl 19082 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝑁𝑋) ∈ 𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
251, 12, 14, 24syl3anc 1477 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
265, 6, 7, 8grpinvid1 17671 . . . 4 ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
273, 23, 25, 26syl3anc 1477 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
2822, 27mpbird 247 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)))
2928eqcomd 2766 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146   ·𝑠 cvsca 16147  0gc0g 16302  Grpcgrp 17623  invgcminusg 17624  LModclmod 19065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-mgp 18690  df-ring 18749  df-lmod 19067
This theorem is referenced by:  invlmhm  19244
  Copyright terms: Public domain W3C validator