MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsinv2 Structured version   Visualization version   GIF version

Theorem lmodvsinv2 19738
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
lmodvsinv2.b 𝐵 = (Base‘𝑊)
lmodvsinv2.f 𝐹 = (Scalar‘𝑊)
lmodvsinv2.s · = ( ·𝑠𝑊)
lmodvsinv2.n 𝑁 = (invg𝑊)
lmodvsinv2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsinv2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))

Proof of Theorem lmodvsinv2
StepHypRef Expression
1 simp1 1128 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ LMod)
2 lmodgrp 19570 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ Grp)
4 simp3 1130 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑋𝐵)
5 lmodvsinv2.b . . . . . . 7 𝐵 = (Base‘𝑊)
6 eqid 2818 . . . . . . 7 (+g𝑊) = (+g𝑊)
7 eqid 2818 . . . . . . 7 (0g𝑊) = (0g𝑊)
8 lmodvsinv2.n . . . . . . 7 𝑁 = (invg𝑊)
95, 6, 7, 8grprinv 18091 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
103, 4, 9syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
1110oveq2d 7161 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = (𝑅 · (0g𝑊)))
12 simp2 1129 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑅𝐾)
135, 8grpinvcl 18089 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
143, 4, 13syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
15 lmodvsinv2.f . . . . . 6 𝐹 = (Scalar‘𝑊)
16 lmodvsinv2.s . . . . . 6 · = ( ·𝑠𝑊)
17 lmodvsinv2.k . . . . . 6 𝐾 = (Base‘𝐹)
185, 6, 15, 16, 17lmodvsdi 19586 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
191, 12, 4, 14, 18syl13anc 1364 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
2015, 16, 17, 7lmodvs0 19597 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
211, 12, 20syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (0g𝑊)) = (0g𝑊))
2211, 19, 213eqtr3d 2861 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊))
235, 15, 16, 17lmodvscl 19580 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · 𝑋) ∈ 𝐵)
245, 15, 16, 17lmodvscl 19580 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝑁𝑋) ∈ 𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
251, 12, 14, 24syl3anc 1363 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
265, 6, 7, 8grpinvid1 18092 . . . 4 ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
273, 23, 25, 26syl3anc 1363 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
2822, 27mpbird 258 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)))
2928eqcomd 2824 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042  LModclmod 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-mgp 19169  df-ring 19228  df-lmod 19565
This theorem is referenced by:  invlmhm  19743  eqgvscpbl  30846
  Copyright terms: Public domain W3C validator