MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsmmulgdi Structured version   Visualization version   GIF version

Theorem lmodvsmmulgdi 19598
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v 𝑉 = (Base‘𝑊)
lmodvsmmulgdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmmulgdi.s · = ( ·𝑠𝑊)
lmodvsmmulgdi.k 𝐾 = (Base‘𝐹)
lmodvsmmulgdi.p = (.g𝑊)
lmodvsmmulgdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmmulgdi ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))

Proof of Theorem lmodvsmmulgdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7152 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐶 · 𝑋)) = (0 (𝐶 · 𝑋)))
2 oveq1 7152 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝐶) = (0𝐸𝐶))
32oveq1d 7160 . . . . . . 7 (𝑥 = 0 → ((𝑥𝐸𝐶) · 𝑋) = ((0𝐸𝐶) · 𝑋))
41, 3eqeq12d 2834 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)))
54imbi2d 342 . . . . 5 (𝑥 = 0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))))
6 oveq1 7152 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝐶 · 𝑋)) = (𝑦 (𝐶 · 𝑋)))
7 oveq1 7152 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝐶) = (𝑦𝐸𝐶))
87oveq1d 7160 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑦𝐸𝐶) · 𝑋))
96, 8eqeq12d 2834 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)))
109imbi2d 342 . . . . 5 (𝑥 = 𝑦 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋))))
11 oveq1 7152 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 (𝐶 · 𝑋)) = ((𝑦 + 1) (𝐶 · 𝑋)))
12 oveq1 7152 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝐶) = ((𝑦 + 1)𝐸𝐶))
1312oveq1d 7160 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
1411, 13eqeq12d 2834 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))
1514imbi2d 342 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
16 oveq1 7152 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐶 · 𝑋)) = (𝑁 (𝐶 · 𝑋)))
17 oveq1 7152 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝐶) = (𝑁𝐸𝐶))
1817oveq1d 7160 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑁𝐸𝐶) · 𝑋))
1916, 18eqeq12d 2834 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
2019imbi2d 342 . . . . 5 (𝑥 = 𝑁 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))))
21 simpr 485 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
22 simpr 485 . . . . . . . 8 ((𝐶𝐾𝑋𝑉) → 𝑋𝑉)
2322adantr 481 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
24 lmodvsmmulgdi.v . . . . . . . 8 𝑉 = (Base‘𝑊)
25 lmodvsmmulgdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
26 lmodvsmmulgdi.s . . . . . . . 8 · = ( ·𝑠𝑊)
27 eqid 2818 . . . . . . . 8 (0g𝐹) = (0g𝐹)
28 eqid 2818 . . . . . . . 8 (0g𝑊) = (0g𝑊)
2924, 25, 26, 27, 28lmod0vs 19596 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3021, 23, 29syl2anc 584 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
31 simpl 483 . . . . . . . . 9 ((𝐶𝐾𝑋𝑉) → 𝐶𝐾)
3231adantr 481 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝐶𝐾)
33 lmodvsmmulgdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
34 lmodvsmmulgdi.e . . . . . . . . 9 𝐸 = (.g𝐹)
3533, 27, 34mulg0 18169 . . . . . . . 8 (𝐶𝐾 → (0𝐸𝐶) = (0g𝐹))
3632, 35syl 17 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0𝐸𝐶) = (0g𝐹))
3736oveq1d 7160 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0𝐸𝐶) · 𝑋) = ((0g𝐹) · 𝑋))
3824, 25, 26, 33lmodvscl 19580 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑋𝑉) → (𝐶 · 𝑋) ∈ 𝑉)
3921, 32, 23, 38syl3anc 1363 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝐶 · 𝑋) ∈ 𝑉)
40 lmodvsmmulgdi.p . . . . . . . 8 = (.g𝑊)
4124, 28, 40mulg0 18169 . . . . . . 7 ((𝐶 · 𝑋) ∈ 𝑉 → (0 (𝐶 · 𝑋)) = (0g𝑊))
4239, 41syl 17 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = (0g𝑊))
4330, 37, 423eqtr4rd 2864 . . . . 5 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))
44 lmodgrp 19570 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
45 grpmnd 18048 . . . . . . . . . . . 12 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
4644, 45syl 17 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
4746ad2antll 725 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
48 simpl 483 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
4939adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝐶 · 𝑋) ∈ 𝑉)
50 eqid 2818 . . . . . . . . . . 11 (+g𝑊) = (+g𝑊)
5124, 40, 50mulgnn0p1 18177 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐶 · 𝑋) ∈ 𝑉) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5247, 48, 49, 51syl3anc 1363 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5352adantr 481 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
54 oveq1 7152 . . . . . . . . 9 ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
5521adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
5625lmodring 19571 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
57 ringmnd 19235 . . . . . . . . . . . . . 14 (𝐹 ∈ Ring → 𝐹 ∈ Mnd)
5856, 57syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
5958ad2antll 725 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
60 simprll 775 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐶𝐾)
6133, 34mulgnn0cl 18182 . . . . . . . . . . . 12 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → (𝑦𝐸𝐶) ∈ 𝐾)
6259, 48, 60, 61syl3anc 1363 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝐶) ∈ 𝐾)
6323adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
64 eqid 2818 . . . . . . . . . . . 12 (+g𝐹) = (+g𝐹)
6524, 50, 25, 26, 33, 64lmodvsdir 19587 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝐶) ∈ 𝐾𝐶𝐾𝑋𝑉)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6655, 62, 60, 63, 65syl13anc 1364 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6733, 34, 64mulgnn0p1 18177 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6859, 48, 60, 67syl3anc 1363 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6968eqcomd 2824 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝐶)(+g𝐹)𝐶) = ((𝑦 + 1)𝐸𝐶))
7069oveq1d 7160 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7166, 70eqtr3d 2855 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7254, 71sylan9eqr 2875 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7353, 72eqtrd 2853 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7473exp31 420 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
7574a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
765, 10, 15, 20, 43, 75nn0ind 12065 . . . 4 (𝑁 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7776exp4c 433 . . 3 (𝑁 ∈ ℕ0 → (𝐶𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))))
78773imp21 1106 . 2 ((𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7978impcom 408 1 ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  0cn0 11885  Basecbs 16471  +gcplusg 16553  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  Mndcmnd 17899  Grpcgrp 18041  .gcmg 18162  Ringcrg 19226  LModclmod 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-seq 13358  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-mulg 18163  df-ring 19228  df-lmod 19565
This theorem is referenced by:  chpscmatgsummon  21381
  Copyright terms: Public domain W3C validator