![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction. (hvsubcl 28002 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 18918 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
4 | 2, 3 | grpsubcl 17542 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1399 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Grpcgrp 17469 -gcsg 17471 LModclmod 18911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-lmod 18913 |
This theorem is referenced by: lspsnsub 19055 lvecvscan 19159 ip2subdi 20037 ip2eq 20046 ipcau2 23079 nmparlem 23084 minveclem1 23241 minveclem2 23243 minveclem4 23249 minveclem6 23251 pjthlem1 23254 pjthlem2 23255 eqlkr 34704 lkrlsp 34707 mapdpglem1 37278 mapdpglem2 37279 mapdpglem5N 37283 mapdpglem8 37285 mapdpglem9 37286 mapdpglem13 37290 mapdpglem14 37291 mapdpglem27 37305 baerlem3lem2 37316 baerlem5alem2 37317 baerlem5blem2 37318 mapdheq4lem 37337 mapdh6lem1N 37339 mapdh6lem2N 37340 hdmap1l6lem1 37414 hdmap1l6lem2 37415 hdmap11 37457 hdmapinvlem4 37530 |
Copyright terms: Public domain | W3C validator |