Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubval2 Structured version   Visualization version   GIF version

Theorem lmodvsubval2 19120
 Description: Value of vector subtraction in terms of addition. (hvsubval 28182 analog.) (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubval2.v 𝑉 = (Base‘𝑊)
lmodvsubval2.p + = (+g𝑊)
lmodvsubval2.m = (-g𝑊)
lmodvsubval2.f 𝐹 = (Scalar‘𝑊)
lmodvsubval2.s · = ( ·𝑠𝑊)
lmodvsubval2.n 𝑁 = (invg𝐹)
lmodvsubval2.u 1 = (1r𝐹)
Assertion
Ref Expression
lmodvsubval2 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((𝑁1 ) · 𝐵)))

Proof of Theorem lmodvsubval2
StepHypRef Expression
1 lmodvsubval2.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodvsubval2.p . . . 4 + = (+g𝑊)
3 eqid 2760 . . . 4 (invg𝑊) = (invg𝑊)
4 lmodvsubval2.m . . . 4 = (-g𝑊)
51, 2, 3, 4grpsubval 17666 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((invg𝑊)‘𝐵)))
653adant1 1125 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((invg𝑊)‘𝐵)))
7 lmodvsubval2.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lmodvsubval2.s . . . . 5 · = ( ·𝑠𝑊)
9 lmodvsubval2.u . . . . 5 1 = (1r𝐹)
10 lmodvsubval2.n . . . . 5 𝑁 = (invg𝐹)
111, 3, 7, 8, 9, 10lmodvneg1 19108 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝑉) → ((𝑁1 ) · 𝐵) = ((invg𝑊)‘𝐵))
12113adant2 1126 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝑁1 ) · 𝐵) = ((invg𝑊)‘𝐵))
1312oveq2d 6829 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + ((𝑁1 ) · 𝐵)) = (𝐴 + ((invg𝑊)‘𝐵)))
146, 13eqtr4d 2797 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((𝑁1 ) · 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146   ·𝑠 cvsca 16147  invgcminusg 17624  -gcsg 17625  1rcur 18701  LModclmod 19065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067 This theorem is referenced by:  lmodsubvs  19121  lmodsubdi  19122  lmodsubdir  19123  lssvsubcl  19146  clmvsubval  23109  lflsub  34857  ldualvsub  34945  ldualvsubval  34947  lcdvsub  37408  lcdvsubval  37409  baerlem3lem1  37498  zlmodzxzsubm  42647
 Copyright terms: Public domain W3C validator