Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmxrge0 Structured version   Visualization version   GIF version

Theorem lmxrge0 29798
Description: Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.)
Hypotheses
Ref Expression
lmxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmxrge0.6 (𝜑𝐹:ℕ⟶(0[,]+∞))
lmxrge0.7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
lmxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝑗,𝐴   𝑗,𝑘,𝐹,𝑥   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑘)   𝐽(𝑗)

Proof of Theorem lmxrge0
Dummy variables 𝑎 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmxrge0.j . . . . . . 7 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 eqid 2621 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 xrstopn 20931 . . . . . . . 8 (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠)
42, 3resstopn 20909 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
51, 4eqtr4i 2646 . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
6 letopon 20928 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
7 iccssxr 12205 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
8 resttopon 20884 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
96, 7, 8mp2an 707 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
105, 9eqeltri 2694 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
1110a1i 11 . . . 4 (𝜑𝐽 ∈ (TopOn‘(0[,]+∞)))
12 nnuz 11674 . . . 4 ℕ = (ℤ‘1)
13 1zzd 11359 . . . 4 (𝜑 → 1 ∈ ℤ)
14 lmxrge0.6 . . . 4 (𝜑𝐹:ℕ⟶(0[,]+∞))
15 lmxrge0.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
1611, 12, 13, 14, 15lmbrf 20983 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))))
17 0xr 10037 . . . . 5 0 ∈ ℝ*
18 pnfxr 10043 . . . . 5 +∞ ∈ ℝ*
19 0lepnf 11917 . . . . 5 0 ≤ +∞
20 ubicc2 12238 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
2117, 18, 19, 20mp3an 1421 . . . 4 +∞ ∈ (0[,]+∞)
2221biantrur 527 . . 3 (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
2316, 22syl6bbr 278 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
24 rexr 10036 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2518a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ → +∞ ∈ ℝ*)
26 ltpnf 11905 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
27 ubioc1 12176 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 < +∞) → +∞ ∈ (𝑥(,]+∞))
2824, 25, 26, 27syl3anc 1323 . . . . . . . . 9 (𝑥 ∈ ℝ → +∞ ∈ (𝑥(,]+∞))
29 0ltpnf 11907 . . . . . . . . . 10 0 < +∞
30 ubioc1 12176 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
3117, 18, 29, 30mp3an 1421 . . . . . . . . 9 +∞ ∈ (0(,]+∞)
3228, 31jctir 560 . . . . . . . 8 (𝑥 ∈ ℝ → (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
33 elin 3779 . . . . . . . 8 (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
3432, 33sylibr 224 . . . . . . 7 (𝑥 ∈ ℝ → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
3534ad2antlr 762 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
36 letop 20929 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ Top
37 ovex 6638 . . . . . . . . . . 11 (0[,]+∞) ∈ V
38 iocpnfordt 20938 . . . . . . . . . . . 12 (𝑥(,]+∞) ∈ (ordTop‘ ≤ )
39 iocpnfordt 20938 . . . . . . . . . . . 12 (0(,]+∞) ∈ (ordTop‘ ≤ )
40 inopn 20632 . . . . . . . . . . . 12 (((ordTop‘ ≤ ) ∈ Top ∧ (𝑥(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
4136, 38, 39, 40mp3an 1421 . . . . . . . . . . 11 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )
42 elrestr 16017 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V ∧ ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )) → (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4336, 37, 41, 42mp3an 1421 . . . . . . . . . 10 (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))
44 inss2 3817 . . . . . . . . . . . . 13 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0(,]+∞)
45 iocssicc 12210 . . . . . . . . . . . . 13 (0(,]+∞) ⊆ (0[,]+∞)
4644, 45sstri 3596 . . . . . . . . . . . 12 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞)
47 sseqin2 3800 . . . . . . . . . . . 12 (((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞) ↔ ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞)))
4846, 47mpbi 220 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞))
49 incom 3788 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5048, 49eqtr3i 2645 . . . . . . . . . 10 ((𝑥(,]+∞) ∩ (0(,]+∞)) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5143, 50, 53eltr4i 2711 . . . . . . . . 9 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽
5251a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽)
53 eleq2 2687 . . . . . . . . . . 11 (𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5453adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5554biimprd 238 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → +∞ ∈ 𝑎))
56 simp-5r 808 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ)
5756rexrd 10040 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ*)
58 simpr 477 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴𝑎)
59 simp-4r 806 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)))
6058, 59eleqtrd 2700 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
61 elin 3779 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (𝐴 ∈ (𝑥(,]+∞) ∧ 𝐴 ∈ (0(,]+∞)))
6261simplbi 476 . . . . . . . . . . . . . . 15 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → 𝐴 ∈ (𝑥(,]+∞))
6360, 62syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ (𝑥(,]+∞))
64 elioc1 12166 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6518, 64mpan2 706 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6665biimpa 501 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞))
6766simp2d 1072 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → 𝑥 < 𝐴)
6857, 63, 67syl2anc 692 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 < 𝐴)
6968ex 450 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝐴𝑎𝑥 < 𝐴))
7069ralimdva 2957 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7170reximdva 3012 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
72 fveq2 6153 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (ℤ𝑗) = (ℤ𝑙))
7372raleqdv 3136 . . . . . . . . . . 11 (𝑗 = 𝑙 → (∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7473cbvrexv 3163 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴)
7571, 74syl6ibr 242 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7655, 75imim12d 81 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → ((+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7752, 76rspcimdv 3299 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7877imp 445 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7935, 78mpd 15 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
8079ex 450 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
8180ralrimdva 2964 . . 3 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
82 simplll 797 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝜑)
83 simpllr 798 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝑎𝐽)
84 simpr 477 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → +∞ ∈ 𝑎)
851pnfneige0 29797 . . . . . . 7 ((𝑎𝐽 ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
8683, 84, 85syl2anc 692 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
87 simplr 791 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
88 r19.29r 3067 . . . . . . . 8 ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
89 simp-4l 805 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝜑)
90 uznnssnn 11686 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
9190ad2antlr 762 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (ℤ𝑙) ⊆ ℕ)
92 simpr 477 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ (ℤ𝑙))
9391, 92sseldd 3588 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ ℕ)
9489, 93jca 554 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝜑𝑘 ∈ ℕ))
95 simp-4r 806 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑥 ∈ ℝ)
96 simpllr 798 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥(,]+∞) ⊆ 𝑎)
97 simplr 791 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → (𝑥(,]+∞) ⊆ 𝑎)
98 simplr 791 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
9998rexrd 10040 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ*)
10014ffvelrnda 6320 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
10115, 100eqeltrrd 2699 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
1027, 101sseldi 3585 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ*)
103102ad2antrr 761 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ ℝ*)
104 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 < 𝐴)
105 pnfge 11915 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
106103, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ≤ +∞)
10765biimpar 502 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)) → 𝐴 ∈ (𝑥(,]+∞))
10899, 103, 104, 106, 107syl13anc 1325 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
109108adantlr 750 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
11097, 109sseldd 3588 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴𝑎)
111110ex 450 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (𝑥 < 𝐴𝐴𝑎))
11294, 95, 96, 111syl21anc 1322 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥 < 𝐴𝐴𝑎))
113112ralimdva 2957 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
114113reximdva 3012 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11574, 114syl5bi 232 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
116115expimpd 628 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
117116rexlimdva 3025 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11888, 117syl5 34 . . . . . . 7 (𝜑 → ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
119118imp 445 . . . . . 6 ((𝜑 ∧ (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
12082, 86, 87, 119syl12anc 1321 . . . . 5 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
121120exp31 629 . . . 4 ((𝜑𝑎𝐽) → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
122121ralrimdva 2964 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
12381, 122impbid 202 . 2 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
12423, 123bitrd 268 1 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559   class class class wbr 4618  wf 5848  cfv 5852  (class class class)co 6610  cr 9886  0cc0 9887  1c1 9888  +∞cpnf 10022  *cxr 10024   < clt 10025  cle 10026  cn 10971  cuz 11638  (,]cioc 12125  [,]cicc 12127  s cress 15789  t crest 16009  TopOpenctopn 16010  ordTopcordt 16087  *𝑠cxrs 16088  Topctop 20626  TopOnctopon 20643  𝑡clm 20949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fi 8268  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-tset 15888  df-ple 15889  df-ds 15892  df-rest 16011  df-topn 16012  df-topgen 16032  df-ordt 16089  df-xrs 16090  df-ps 17128  df-tsr 17129  df-top 20627  df-topon 20644  df-bases 20670  df-lm 20952
This theorem is referenced by:  lmdvglim  29800
  Copyright terms: Public domain W3C validator