Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnconi Structured version   Visualization version   GIF version

Theorem lnconi 28741
 Description: Lemma for lnopconi 28742 and lnfnconi 28763. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncon.1 (𝑇𝐶𝑆 ∈ ℝ)
lncon.2 ((𝑇𝐶𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
lncon.3 (𝑇𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
lncon.4 (𝑦 ∈ ℋ → (𝑁‘(𝑇𝑦)) ∈ ℝ)
lncon.5 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
Assertion
Ref Expression
lnconi (𝑇𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝑁   𝑦,𝑀   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑀(𝑥,𝑧,𝑤)

Proof of Theorem lnconi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lncon.1 . . 3 (𝑇𝐶𝑆 ∈ ℝ)
2 lncon.2 . . . 4 ((𝑇𝐶𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
32ralrimiva 2960 . . 3 (𝑇𝐶 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
4 oveq1 6611 . . . . . 6 (𝑥 = 𝑆 → (𝑥 · (norm𝑦)) = (𝑆 · (norm𝑦)))
54breq2d 4625 . . . . 5 (𝑥 = 𝑆 → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))))
65ralbidv 2980 . . . 4 (𝑥 = 𝑆 → (∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))))
76rspcev 3295 . . 3 ((𝑆 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
81, 3, 7syl2anc 692 . 2 (𝑇𝐶 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
9 arch 11233 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
109adantr 481 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
11 nnre 10971 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
12 simplll 797 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℝ)
13 simpllr 798 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑛 ∈ ℝ)
14 normcl 27831 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
1514adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
16 normge0 27832 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
1716adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 0 ≤ (norm𝑦))
18 ltle 10070 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 < 𝑛𝑥𝑛))
1918imp 445 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑥𝑛)
2019adantr 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑥𝑛)
2112, 13, 15, 17, 20lemul1ad 10907 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦)))
22 lncon.4 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (𝑁‘(𝑇𝑦)) ∈ ℝ)
2322adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ∈ ℝ)
24 simpll 789 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑥 ∈ ℝ)
25 remulcl 9965 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (𝑥 · (norm𝑦)) ∈ ℝ)
2624, 14, 25syl2an 494 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑥 · (norm𝑦)) ∈ ℝ)
27 simplr 791 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑛 ∈ ℝ)
28 remulcl 9965 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (𝑛 · (norm𝑦)) ∈ ℝ)
2927, 14, 28syl2an 494 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑛 · (norm𝑦)) ∈ ℝ)
30 letr 10075 . . . . . . . . . . . 12 (((𝑁‘(𝑇𝑦)) ∈ ℝ ∧ (𝑥 · (norm𝑦)) ∈ ℝ ∧ (𝑛 · (norm𝑦)) ∈ ℝ) → (((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ∧ (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3123, 26, 29, 30syl3anc 1323 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ∧ (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3221, 31mpan2d 709 . . . . . . . . . 10 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3332ralimdva 2956 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → (∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3433impancom 456 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3534an32s 845 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ∧ 𝑛 ∈ ℝ) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3611, 35sylan2 491 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3736reximdva 3011 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → (∃𝑛 ∈ ℕ 𝑥 < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3810, 37mpd 15 . . . 4 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)))
3938rexlimiva 3021 . . 3 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)))
40 simprr 795 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
41 simpll 789 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑛 ∈ ℕ)
4241nnrpd 11814 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑛 ∈ ℝ+)
4340, 42rpdivcld 11833 . . . . . . 7 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → (𝑧 / 𝑛) ∈ ℝ+)
44 simprr 795 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑤 ∈ ℋ)
45 simprll 801 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑥 ∈ ℋ)
46 hvsubcl 27723 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑤 𝑥) ∈ ℋ)
4744, 45, 46syl2anc 692 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑥) ∈ ℋ)
48 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 𝑥) → (𝑇𝑦) = (𝑇‘(𝑤 𝑥)))
4948fveq2d 6152 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → (𝑁‘(𝑇𝑦)) = (𝑁‘(𝑇‘(𝑤 𝑥))))
50 fveq2 6148 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 𝑥) → (norm𝑦) = (norm‘(𝑤 𝑥)))
5150oveq2d 6620 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → (𝑛 · (norm𝑦)) = (𝑛 · (norm‘(𝑤 𝑥))))
5249, 51breq12d 4626 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 𝑥) → ((𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) ↔ (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥)))))
5352rspcva 3293 . . . . . . . . . . . . 13 (((𝑤 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5447, 53sylan 488 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5554an32s 845 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5649eleq1d 2683 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → ((𝑁‘(𝑇𝑦)) ∈ ℝ ↔ (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ))
5756, 22vtoclga 3258 . . . . . . . . . . . . . 14 ((𝑤 𝑥) ∈ ℋ → (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ)
5847, 57syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ)
5911adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑛 ∈ ℝ)
60 normcl 27831 . . . . . . . . . . . . . . 15 ((𝑤 𝑥) ∈ ℋ → (norm‘(𝑤 𝑥)) ∈ ℝ)
6147, 60syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (norm‘(𝑤 𝑥)) ∈ ℝ)
62 remulcl 9965 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (norm‘(𝑤 𝑥)) ∈ ℝ) → (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ)
6359, 61, 62syl2anc 692 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ)
64 simprlr 802 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑧 ∈ ℝ+)
6564rpred 11816 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑧 ∈ ℝ)
66 lelttr 10072 . . . . . . . . . . . . 13 (((𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ ∧ (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6758, 63, 65, 66syl3anc 1323 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6867adantlr 750 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6955, 68mpand 710 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
70 nnrp 11786 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7170rpregt0d 11822 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
7271adantr 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
73 ltmuldiv2 10841 . . . . . . . . . . . 12 (((norm‘(𝑤 𝑥)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
7461, 65, 72, 73syl3anc 1323 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
7574adantlr 750 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
76 lncon.5 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7744, 45, 76syl2anc 692 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7877adantlr 750 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7978fveq2d 6152 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) = (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))))
8079breq1d 4623 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧 ↔ (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8169, 75, 803imtr3d 282 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8281anassrs 679 . . . . . . . 8 ((((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8382ralrimiva 2960 . . . . . . 7 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
84 breq2 4617 . . . . . . . . . 10 (𝑦 = (𝑧 / 𝑛) → ((norm‘(𝑤 𝑥)) < 𝑦 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
8584imbi1d 331 . . . . . . . . 9 (𝑦 = (𝑧 / 𝑛) → (((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧) ↔ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧)))
8685ralbidv 2980 . . . . . . . 8 (𝑦 = (𝑧 / 𝑛) → (∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧)))
8786rspcev 3295 . . . . . . 7 (((𝑧 / 𝑛) ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧)) → ∃𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8843, 83, 87syl2anc 692 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8988ralrimivva 2965 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
9089rexlimiva 3021 . . . 4 (∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
91 lncon.3 . . . 4 (𝑇𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
9290, 91sylibr 224 . . 3 (∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) → 𝑇𝐶)
9339, 92syl 17 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → 𝑇𝐶)
948, 93impbii 199 1 (𝑇𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   class class class wbr 4613  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880   · cmul 9885   < clt 10018   ≤ cle 10019   / cdiv 10628  ℕcn 10964  ℝ+crp 11776   ℋchil 27625  normℎcno 27629   −ℎ cmv 27631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-hfvadd 27706  ax-hv0cl 27709  ax-hfvmul 27711  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his3 27790  ax-his4 27791 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-hnorm 27674  df-hvsub 27677 This theorem is referenced by:  lnopconi  28742  lnfnconi  28763
 Copyright terms: Public domain W3C validator