HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnl Structured version   Visualization version   GIF version

Theorem lnfnl 28660
Description: Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfnl (((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))

Proof of Theorem lnfnl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellnfn 28612 . . . . . 6 (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
21simprbi 480 . . . . 5 (𝑇 ∈ LinFn → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
3 oveq1 6617 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
43oveq1d 6625 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥 · 𝑦) + 𝑧) = ((𝐴 · 𝑦) + 𝑧))
54fveq2d 6157 . . . . . . 7 (𝑥 = 𝐴 → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝑦) + 𝑧)))
6 oveq1 6617 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · (𝑇𝑦)) = (𝐴 · (𝑇𝑦)))
76oveq1d 6625 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)))
85, 7eqeq12d 2636 . . . . . 6 (𝑥 = 𝐴 → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧))))
9 oveq2 6618 . . . . . . . . 9 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
109oveq1d 6625 . . . . . . . 8 (𝑦 = 𝐵 → ((𝐴 · 𝑦) + 𝑧) = ((𝐴 · 𝐵) + 𝑧))
1110fveq2d 6157 . . . . . . 7 (𝑦 = 𝐵 → (𝑇‘((𝐴 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝑧)))
12 fveq2 6153 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
1312oveq2d 6626 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · (𝑇𝑦)) = (𝐴 · (𝑇𝐵)))
1413oveq1d 6625 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)))
1511, 14eqeq12d 2636 . . . . . 6 (𝑦 = 𝐵 → ((𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧))))
16 oveq2 6618 . . . . . . . 8 (𝑧 = 𝐶 → ((𝐴 · 𝐵) + 𝑧) = ((𝐴 · 𝐵) + 𝐶))
1716fveq2d 6157 . . . . . . 7 (𝑧 = 𝐶 → (𝑇‘((𝐴 · 𝐵) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝐶)))
18 fveq2 6153 . . . . . . . 8 (𝑧 = 𝐶 → (𝑇𝑧) = (𝑇𝐶))
1918oveq2d 6626 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
2017, 19eqeq12d 2636 . . . . . 6 (𝑧 = 𝐶 → ((𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
218, 15, 20rspc3v 3313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
222, 21syl5 34 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinFn → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
23223expb 1263 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinFn → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
2423impcom 446 . 2 ((𝑇 ∈ LinFn ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
2524anassrs 679 1 (((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wf 5848  cfv 5852  (class class class)co 6610  cc 9886   + caddc 9891   · cmul 9893  chil 27646   + cva 27647   · csm 27648  LinFnclf 27681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-hilex 27726
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-map 7811  df-lnfn 28577
This theorem is referenced by:  lnfnli  28769
  Copyright terms: Public domain W3C validator