Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlsslnm Structured version   Visualization version   GIF version

Theorem lnmlsslnm 39687
Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lnmlssfg.s 𝑆 = (LSubSp‘𝑀)
lnmlssfg.r 𝑅 = (𝑀s 𝑈)
Assertion
Ref Expression
lnmlsslnm ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)

Proof of Theorem lnmlsslnm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lnmlmod 39685 . . 3 (𝑀 ∈ LNoeM → 𝑀 ∈ LMod)
2 lnmlssfg.r . . . 4 𝑅 = (𝑀s 𝑈)
3 lnmlssfg.s . . . 4 𝑆 = (LSubSp‘𝑀)
42, 3lsslmod 19735 . . 3 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
51, 4sylan 582 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LMod)
62oveq1i 7169 . . . . 5 (𝑅s 𝑎) = ((𝑀s 𝑈) ↾s 𝑎)
7 simplr 767 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈𝑆)
8 eqid 2824 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2824 . . . . . . . . 9 (LSubSp‘𝑅) = (LSubSp‘𝑅)
108, 9lssss 19711 . . . . . . . 8 (𝑎 ∈ (LSubSp‘𝑅) → 𝑎 ⊆ (Base‘𝑅))
1110adantl 484 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎 ⊆ (Base‘𝑅))
12 eqid 2824 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
1312, 3lssss 19711 . . . . . . . . 9 (𝑈𝑆𝑈 ⊆ (Base‘𝑀))
142, 12ressbas2 16558 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝑀) → 𝑈 = (Base‘𝑅))
1513, 14syl 17 . . . . . . . 8 (𝑈𝑆𝑈 = (Base‘𝑅))
1615ad2antlr 725 . . . . . . 7 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑈 = (Base‘𝑅))
1711, 16sseqtrrd 4011 . . . . . 6 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑈)
18 ressabs 16566 . . . . . 6 ((𝑈𝑆𝑎𝑈) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
197, 17, 18syl2anc 586 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → ((𝑀s 𝑈) ↾s 𝑎) = (𝑀s 𝑎))
206, 19syl5eq 2871 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) = (𝑀s 𝑎))
21 simpll 765 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑀 ∈ LNoeM)
222, 3, 9lsslss 19736 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
231, 22sylan 582 . . . . . 6 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → (𝑎 ∈ (LSubSp‘𝑅) ↔ (𝑎𝑆𝑎𝑈)))
2423simprbda 501 . . . . 5 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → 𝑎𝑆)
25 eqid 2824 . . . . . 6 (𝑀s 𝑎) = (𝑀s 𝑎)
263, 25lnmlssfg 39686 . . . . 5 ((𝑀 ∈ LNoeM ∧ 𝑎𝑆) → (𝑀s 𝑎) ∈ LFinGen)
2721, 24, 26syl2anc 586 . . . 4 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑀s 𝑎) ∈ LFinGen)
2820, 27eqeltrd 2916 . . 3 (((𝑀 ∈ LNoeM ∧ 𝑈𝑆) ∧ 𝑎 ∈ (LSubSp‘𝑅)) → (𝑅s 𝑎) ∈ LFinGen)
2928ralrimiva 3185 . 2 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen)
309islnm 39683 . 2 (𝑅 ∈ LNoeM ↔ (𝑅 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑅)(𝑅s 𝑎) ∈ LFinGen))
315, 29, 30sylanbrc 585 1 ((𝑀 ∈ LNoeM ∧ 𝑈𝑆) → 𝑅 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wss 3939  cfv 6358  (class class class)co 7159  Basecbs 16486  s cress 16487  LModclmod 19637  LSubSpclss 19706  LFinGenclfig 39673  LNoeMclnm 39681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-sca 16584  df-vsca 16585  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-mgp 19243  df-ur 19255  df-ring 19302  df-lmod 19639  df-lss 19707  df-lnm 39682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator