MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Structured version   Visualization version   GIF version

Theorem lnof 27580
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1 𝑋 = (BaseSet‘𝑈)
lnof.2 𝑌 = (BaseSet‘𝑊)
lnof.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnof ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)

Proof of Theorem lnof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnof.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 eqid 2620 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
4 eqid 2620 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
5 eqid 2620 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
6 eqid 2620 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
7 lnof.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 27578 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑇𝑦))( +𝑣𝑊)(𝑇𝑧)))))
98simprbda 652 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
1093impa 1257 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wf 5872  cfv 5876  (class class class)co 6635  cc 9919  NrmCVeccnv 27409   +𝑣 cpv 27410  BaseSetcba 27411   ·𝑠OLD cns 27412   LnOp clno 27565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844  df-lno 27569
This theorem is referenced by:  lno0  27581  lnocoi  27582  lnoadd  27583  lnosub  27584  lnomul  27585  isblo2  27608  blof  27610  nmlno0lem  27618  nmlnoubi  27621  nmlnogt0  27622  lnon0  27623  isblo3i  27626  blocnilem  27629  blocni  27630  htthlem  27744
  Copyright terms: Public domain W3C validator