MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Structured version   Visualization version   GIF version

Theorem lnomul 28464
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1 𝑋 = (BaseSet‘𝑈)
lnomul.5 𝑅 = ( ·𝑠OLD𝑈)
lnomul.6 𝑆 = ( ·𝑠OLD𝑊)
lnomul.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnomul (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 483 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿))
2 simprl 767 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐴 ∈ ℂ)
3 simprr 769 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐵𝑋)
4 simpl1 1183 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑈 ∈ NrmCVec)
5 lnomul.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 eqid 2818 . . . . 5 (0vec𝑈) = (0vec𝑈)
75, 6nvzcl 28338 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
84, 7syl 17 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (0vec𝑈) ∈ 𝑋)
9 eqid 2818 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
10 eqid 2818 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2818 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
12 lnomul.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
13 lnomul.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
14 lnomul.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
155, 9, 10, 11, 12, 13, 14lnolin 28458 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (0vec𝑈) ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
161, 2, 3, 8, 15syl13anc 1364 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
175, 12nvscl 28330 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑅𝐵) ∈ 𝑋)
184, 2, 3, 17syl3anc 1363 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑅𝐵) ∈ 𝑋)
195, 10, 6nv0rid 28339 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑅𝐵) ∈ 𝑋) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
204, 18, 19syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
2120fveq2d 6667 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = (𝑇‘(𝐴𝑅𝐵)))
22 eqid 2818 . . . . . 6 (0vec𝑊) = (0vec𝑊)
235, 9, 6, 22, 14lno0 28460 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
2423oveq2d 7161 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
2524adantr 481 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
26 simpl2 1184 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑊 ∈ NrmCVec)
275, 9, 14lnof 28459 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2827adantr 481 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2928, 3ffvelrnd 6844 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
309, 13nvscl 28330 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
3126, 2, 29, 30syl3anc 1363 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
329, 11, 22nv0rid 28339 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3326, 31, 32syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3425, 33eqtrd 2853 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = (𝐴𝑆(𝑇𝐵)))
3516, 21, 343eqtr3d 2861 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  NrmCVeccnv 28288   +𝑣 cpv 28289  BaseSetcba 28290   ·𝑠OLD cns 28291  0veccn0v 28292   LnOp clno 28444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-grpo 28197  df-gid 28198  df-ginv 28199  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-nmcv 28304  df-lno 28448
This theorem is referenced by:  nmlno0lem  28497  nmblolbii  28503  blocnilem  28508  ubthlem2  28575
  Copyright terms: Public domain W3C validator