MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Visualization version   GIF version

Theorem lnon0 27514
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1 𝑋 = (BaseSet‘𝑈)
lnon0.6 𝑍 = (0vec𝑈)
lnon0.0 𝑂 = (𝑈 0op 𝑊)
lnon0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnon0 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥)   𝑍(𝑥)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 2986 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ¬ ∃𝑥𝑋 𝑥𝑍)
2 nne 2794 . . . . . 6 𝑥𝑍𝑥 = 𝑍)
32ralbii 2974 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
41, 3bitr3i 266 . . . 4 (¬ ∃𝑥𝑋 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
5 fveq2 6150 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑇𝑥) = (𝑇𝑍))
6 lnon0.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
7 eqid 2621 . . . . . . . . . . 11 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 lnon0.6 . . . . . . . . . . 11 𝑍 = (0vec𝑈)
9 eqid 2621 . . . . . . . . . . 11 (0vec𝑊) = (0vec𝑊)
10 lnon0.7 . . . . . . . . . . 11 𝐿 = (𝑈 LnOp 𝑊)
116, 7, 8, 9, 10lno0 27472 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
125, 11sylan9eqr 2677 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑥 = 𝑍) → (𝑇𝑥) = (0vec𝑊))
1312ex 450 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑥 = 𝑍 → (𝑇𝑥) = (0vec𝑊)))
1413ralimdv 2957 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
156, 7, 10lnof 27471 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
16 ffn 6004 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → 𝑇 Fn 𝑋)
1715, 16syl 17 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇 Fn 𝑋)
1814, 17jctild 565 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊))))
19 fconstfv 6433 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
20 fvex 6160 . . . . . . . 8 (0vec𝑊) ∈ V
2120fconst2 6427 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2219, 21bitr3i 266 . . . . . 6 ((𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)) ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2318, 22syl6ib 241 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = (𝑋 × {(0vec𝑊)})))
24 lnon0.0 . . . . . . . 8 𝑂 = (𝑈 0op 𝑊)
256, 9, 240ofval 27503 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec𝑊)}))
26253adant3 1079 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑂 = (𝑋 × {(0vec𝑊)}))
2726eqeq2d 2631 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 = 𝑂𝑇 = (𝑋 × {(0vec𝑊)})))
2823, 27sylibrd 249 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = 𝑂))
294, 28syl5bi 232 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (¬ ∃𝑥𝑋 𝑥𝑍𝑇 = 𝑂))
3029necon1ad 2807 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑂 → ∃𝑥𝑋 𝑥𝑍))
3130imp 445 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {csn 4150   × cxp 5074   Fn wfn 5844  wf 5845  cfv 5849  (class class class)co 6607  NrmCVeccnv 27300  BaseSetcba 27302  0veccn0v 27304   LnOp clno 27456   0op c0o 27459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-po 4997  df-so 4998  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-1st 7116  df-2nd 7117  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-ltxr 10026  df-sub 10215  df-neg 10216  df-grpo 27208  df-gid 27209  df-ginv 27210  df-ablo 27260  df-vc 27275  df-nv 27308  df-va 27311  df-ba 27312  df-sm 27313  df-0v 27314  df-nmcv 27316  df-lno 27460  df-0o 27463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator