HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcon Structured version   Visualization version   GIF version

Theorem lnopcon 29022
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopcon (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnopcon
StepHypRef Expression
1 eleq1 2718 . . 3 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ ContOp ↔ if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp))
2 fveq1 6228 . . . . . 6 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦))
32fveq2d 6233 . . . . 5 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (norm‘(𝑇𝑦)) = (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)))
43breq1d 4695 . . . 4 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
54rexralbidv 3087 . . 3 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦))))
61, 5bibi12d 334 . 2 (𝑇 = if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ↔ (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦)))))
7 idlnop 28979 . . . 4 ( I ↾ ℋ) ∈ LinOp
87elimel 4183 . . 3 if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ LinOp
98lnopconi 29021 . 2 (if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ)) ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(if(𝑇 ∈ LinOp, 𝑇, ( I ↾ ℋ))‘𝑦)) ≤ (𝑥 · (norm𝑦)))
106, 9dedth 4172 1 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  wral 2941  wrex 2942  ifcif 4119   class class class wbr 4685   I cid 5052  cres 5145  cfv 5926  (class class class)co 6690  cr 9973   · cmul 9979  cle 10113  chil 27904  normcno 27908  ContOpccop 27931  LinOpclo 27932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-nmop 28826  df-cnop 28827  df-lnop 28828  df-unop 28830
This theorem is referenced by:  lnopcnbd  29023
  Copyright terms: Public domain W3C validator