HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Structured version   Visualization version   GIF version

Theorem lnopeq0lem2 28849
Description: Lemma for lnopeq0i 28850. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopeq0lem2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 6189 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
21oveq1d 6662 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
3 oveq1 6654 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
43fveq2d 6193 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
54, 3oveq12d 6665 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
6 oveq1 6654 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
76fveq2d 6193 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
87, 6oveq12d 6665 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
95, 8oveq12d 6665 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))))
10 oveq1 6654 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))
1110fveq2d 6193 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
1211, 10oveq12d 6665 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
13 oveq1 6654 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))
1413fveq2d 6193 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇‘(𝐴 (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
1514, 13oveq12d 6665 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
1612, 15oveq12d 6665 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))
1716oveq2d 6663 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))))
189, 17oveq12d 6665 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))))
1918oveq1d 6662 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4))
202, 19eqeq12d 2636 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4)))
21 oveq2 6655 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
22 oveq2 6655 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
2322fveq2d 6193 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
2423, 22oveq12d 6665 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
25 oveq2 6655 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2625fveq2d 6193 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2726, 25oveq12d 6665 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2824, 27oveq12d 6665 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))))
29 oveq2 6655 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
3029oveq2d 6663 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3130fveq2d 6193 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3231, 30oveq12d 6665 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3329oveq2d 6663 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3433fveq2d 6193 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3534, 33oveq12d 6665 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3632, 35oveq12d 6665 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))) = (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))
3736oveq2d 6663 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))) = (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))))
3828, 37oveq12d 6665 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) = ((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))))
3938oveq1d 6662 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4))
4021, 39eqeq12d 2636 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))))) / 4) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)))
41 lnopeq0.1 . . 3 𝑇 ∈ LinOp
42 ifhvhv0 27863 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
43 ifhvhv0 27863 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
4441, 42, 43lnopeq0lem1 28848 . 2 ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))) + (i · (((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) − ((𝑇‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))) ·ih (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))))) / 4)
4520, 40, 44dedth2h 4138 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  ifcif 4084  cfv 5886  (class class class)co 6647  ici 9935   + caddc 9936   · cmul 9938  cmin 10263   / cdiv 10681  4c4 11069  chil 27760   + cva 27761   · csm 27762   ·ih csp 27763  0c0v 27765   cmv 27766  LinOpclo 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-hilex 27840  ax-hfvadd 27841  ax-hvass 27843  ax-hv0cl 27844  ax-hvaddid 27845  ax-hfvmul 27846  ax-hvmulid 27847  ax-hvdistr2 27850  ax-hvmul0 27851  ax-hfi 27920  ax-his1 27923  ax-his2 27924  ax-his3 27925
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-2 11076  df-3 11077  df-4 11078  df-cj 13833  df-re 13834  df-im 13835  df-hvsub 27812  df-lnop 28684
This theorem is referenced by:  lnopeq0i  28850
  Copyright terms: Public domain W3C validator