HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmi Structured version   Visualization version   GIF version

Theorem lnopmi 29780
Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopm.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopmi (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)

Proof of Theorem lnopmi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopm.1 . . . 4 𝑇 ∈ LinOp
21lnopfi 29749 . . 3 𝑇: ℋ⟶ ℋ
3 homulcl 29539 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
42, 3mpan2 689 . 2 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
5 hvmulcl 28793 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
6 hvaddcl 28792 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
75, 6sylan 582 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 homval 29521 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
92, 8mp3an2 1445 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
107, 9sylan2 594 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
11 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
122ffvelrni 6853 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
13 hvmulcl 28793 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
1412, 13sylan2 594 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
152ffvelrni 6853 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
16 ax-hvdistr1 28788 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
1711, 14, 15, 16syl3an 1156 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
18173expb 1116 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
191lnopli 29748 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
20193expa 1114 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
2120oveq2d 7175 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
2221adantl 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
23 homval 29521 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
242, 23mp3an2 1445 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
2524adantrl 714 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
2625oveq2d 7175 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 · (𝐴 · (𝑇𝑦))))
27 hvmulcom 28823 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
2812, 27syl3an3 1161 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
29283expb 1116 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
3026, 29eqtr4d 2862 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) = (𝐴 · (𝑥 · (𝑇𝑦))))
31 homval 29521 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑧) = (𝐴 · (𝑇𝑧)))
322, 31mp3an2 1445 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑧) = (𝐴 · (𝑇𝑧)))
3330, 32oveqan12d 7178 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
3433anandis 676 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
3518, 22, 343eqtr4rd 2870 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
3610, 35eqtr4d 2862 . . . . 5 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))
3736exp32 423 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))))
3837ralrimdv 3191 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧))))
3938ralrimivv 3193 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))
40 ellnop 29638 . 2 ((𝐴 ·op 𝑇) ∈ LinOp ↔ ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧))))
414, 39, 40sylanbrc 585 1 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  chba 28699   + cva 28700   · csm 28701   ·op chot 28719  LinOpclo 28727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-mulcom 10604  ax-hilex 28779  ax-hfvadd 28780  ax-hfvmul 28785  ax-hvmulass 28787  ax-hvdistr1 28788
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-homul 29511  df-lnop 29621
This theorem is referenced by:  lnophdi  29782  bdophmi  29812
  Copyright terms: Public domain W3C validator