MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnopp2hpgb Structured version   Visualization version   GIF version

Theorem lnopp2hpgb 25700
Description: Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
lnopp2hpgb.c (𝜑𝐶𝑃)
lnopp2hpgb.1 (𝜑𝐴𝑂𝐶)
Assertion
Ref Expression
lnopp2hpgb (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem lnopp2hpgb
Dummy variables 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopp2hpgb.c . . . . 5 (𝜑𝐶𝑃)
21adantr 480 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐶𝑃)
3 lnopp2hpgb.1 . . . . 5 (𝜑𝐴𝑂𝐶)
43adantr 480 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐴𝑂𝐶)
5 simpr 476 . . . 4 ((𝜑𝐵𝑂𝐶) → 𝐵𝑂𝐶)
6 breq2 4689 . . . . . 6 (𝑑 = 𝐶 → (𝐴𝑂𝑑𝐴𝑂𝐶))
7 breq2 4689 . . . . . 6 (𝑑 = 𝐶 → (𝐵𝑂𝑑𝐵𝑂𝐶))
86, 7anbi12d 747 . . . . 5 (𝑑 = 𝐶 → ((𝐴𝑂𝑑𝐵𝑂𝑑) ↔ (𝐴𝑂𝐶𝐵𝑂𝐶)))
98rspcev 3340 . . . 4 ((𝐶𝑃 ∧ (𝐴𝑂𝐶𝐵𝑂𝐶)) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
102, 4, 5, 9syl12anc 1364 . . 3 ((𝜑𝐵𝑂𝐶) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
11 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
12 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
13 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
14 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
15 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
16 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
17 hpgbr.a . . . . 5 (𝜑𝐴𝑃)
18 hpgbr.b . . . . 5 (𝜑𝐵𝑃)
1911, 12, 13, 14, 15, 16, 17, 18hpgbr 25697 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2019adantr 480 . . 3 ((𝜑𝐵𝑂𝐶) → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑)))
2110, 20mpbird 247 . 2 ((𝜑𝐵𝑂𝐶) → 𝐴((hpG‘𝐺)‘𝐷)𝐵)
22 eqid 2651 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
2316ad7antr 781 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐷 ∈ ran 𝐿)
2423ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
2515ad7antr 781 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐺 ∈ TarskiG)
2625ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐺 ∈ TarskiG)
27 eqid 2651 . . . . . . . 8 (hlG‘𝐺) = (hlG‘𝐺)
2817ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑃)
2928ad4antr 769 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐴𝑃)
3029ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑃)
3118ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑃)
3231ad4antr 769 . . . . . . . . 9 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑃)
3332ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑃)
341ad10antr 793 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐶𝑃)
353ad10antr 793 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝐶)
36 simpr 476 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐷)
37 simplr 807 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝐷)
3811, 13, 12, 25, 23, 37tglnpt 25489 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦𝑃)
3938ad3antrrr 766 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝑃)
40 simp-5r 826 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐷)
4111, 22, 12, 14, 13, 24, 26, 30, 34, 35oppne1 25678 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐴𝐷)
42 nelne2 2920 . . . . . . . . . . . . . . 15 ((𝑦𝐷 ∧ ¬ 𝐴𝐷) → 𝑦𝐴)
4340, 41, 42syl2anc 694 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦𝐴)
4411, 12, 13, 26, 39, 30, 43tgelrnln 25570 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ∈ ran 𝐿)
4511, 12, 13, 26, 39, 30, 43tglinerflx2 25574 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴 ∈ (𝑦𝐿𝐴))
46 nelne1 2919 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝑦𝐿𝐴) ∧ ¬ 𝐴𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4745, 41, 46syl2anc 694 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑦𝐿𝐴) ≠ 𝐷)
4847necomd 2878 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑦𝐿𝐴))
49 simpllr 815 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑃)
50 simplrr 818 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
5111, 12, 13, 26, 39, 30, 49, 43, 50btwnlng1 25559 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐿𝐴))
5236, 51elind 3831 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5311, 12, 13, 26, 39, 30, 43tglinerflx1 25573 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑦𝐿𝐴))
5440, 53elind 3831 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐷 ∩ (𝑦𝐿𝐴)))
5511, 12, 13, 26, 24, 44, 48, 52, 54tglineineq 25583 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑦)
5655, 43eqnetrd 2890 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐴)
5756necomd 2878 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑧)
58 simp-4r 824 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝐷)
5911, 13, 12, 25, 23, 58tglnpt 25489 . . . . . . . . . . . . . . 15 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥𝑃)
6059ad3antrrr 766 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝑃)
61 simp-7r 830 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐷)
62 simplr 807 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝑑𝑃)
6362ad4antr 769 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑑𝑃)
6463ad3antrrr 766 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑃)
65 simprr 811 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝑑)
6665ad7antr 781 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝑑)
6711, 22, 12, 14, 13, 24, 26, 33, 64, 66oppne1 25678 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝐵𝐷)
68 nelne2 2920 . . . . . . . . . . . . . . 15 ((𝑥𝐷 ∧ ¬ 𝐵𝐷) → 𝑥𝐵)
6961, 67, 68syl2anc 694 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥𝐵)
7011, 12, 13, 26, 60, 33, 69tgelrnln 25570 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ∈ ran 𝐿)
7111, 12, 13, 26, 60, 33, 69tglinerflx2 25574 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵 ∈ (𝑥𝐿𝐵))
72 nelne1 2919 . . . . . . . . . . . . . . 15 ((𝐵 ∈ (𝑥𝐿𝐵) ∧ ¬ 𝐵𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7371, 67, 72syl2anc 694 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝑥𝐿𝐵) ≠ 𝐷)
7473necomd 2878 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐷 ≠ (𝑥𝐿𝐵))
75 simplrl 817 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
7611, 12, 13, 26, 60, 33, 49, 69, 75btwnlng1 25559 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐿𝐵))
7736, 76elind 3831 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
7811, 12, 13, 26, 60, 33, 69tglinerflx1 25573 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑥𝐿𝐵))
7961, 78elind 3831 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐷 ∩ (𝑥𝐿𝐵)))
8011, 12, 13, 26, 24, 70, 74, 77, 79tglineineq 25583 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 = 𝑥)
8180, 69eqnetrd 2890 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝐵)
8281necomd 2878 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑧)
83 simprl 809 . . . . . . . . . . . . . . 15 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐴𝑂𝑑)
8483ad7antr 781 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴𝑂𝑑)
8511, 22, 12, 14, 13, 24, 26, 30, 64, 84oppne2 25679 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → ¬ 𝑑𝐷)
86 nelne2 2920 . . . . . . . . . . . . 13 ((𝑧𝐷 ∧ ¬ 𝑑𝐷) → 𝑧𝑑)
8736, 85, 86syl2anc 694 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧𝑑)
8887necomd 2878 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑑𝑧)
89 simpllr 815 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑥 ∈ (𝐴𝐼𝑑))
9089ad3antrrr 766 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝐴𝐼𝑑))
9111, 22, 12, 26, 30, 60, 64, 90tgbtwncom 25428 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑥 ∈ (𝑑𝐼𝐴))
9280, 91eqeltrd 2730 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐴))
93 simpr 476 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝑦 ∈ (𝐵𝐼𝑑))
9493ad3antrrr 766 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝐵𝐼𝑑))
9511, 22, 12, 26, 33, 39, 64, 94tgbtwncom 25428 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑦 ∈ (𝑑𝐼𝐵))
9655, 95eqeltrd 2730 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝑧 ∈ (𝑑𝐼𝐵))
9711, 12, 26, 64, 49, 30, 33, 88, 92, 96tgbtwnconn2 25516 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))
9857, 82, 973jca 1261 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴𝑧𝐵𝑧 ∧ (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴))))
9911, 12, 27, 30, 33, 49, 26ishlg 25542 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → (𝐴((hlG‘𝐺)‘𝑧)𝐵 ↔ (𝐴𝑧𝐵𝑧 ∧ (𝐴 ∈ (𝑧𝐼𝐵) ∨ 𝐵 ∈ (𝑧𝐼𝐴)))))
10098, 99mpbird 247 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑧)𝐵)
10111, 22, 12, 14, 13, 24, 26, 27, 30, 33, 34, 35, 36, 100opphl 25691 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ 𝑧𝐷) → 𝐵𝑂𝐶)
10223ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐷 ∈ ran 𝐿)
10325ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐺 ∈ TarskiG)
104 simpllr 815 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑃)
10532ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑃)
1061ad10antr 793 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐶𝑃)
10729ad3antrrr 766 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑃)
1083ad10antr 793 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴𝑂𝐶)
10937ad3antrrr 766 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐷)
11038ad3antrrr 766 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑃)
111 simplrr 818 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑦𝐼𝐴))
112 simpr 476 . . . . . . . . . . . . . 14 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → ¬ 𝑧𝐷)
113 nelne2 2920 . . . . . . . . . . . . . 14 ((𝑦𝐷 ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
114109, 112, 113syl2anc 694 . . . . . . . . . . . . 13 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝑧)
115114necomd 2878 . . . . . . . . . . . 12 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑦)
11611, 22, 12, 103, 110, 104, 107, 111, 115tgbtwnne 25430 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑦𝐴)
11711, 12, 27, 110, 107, 104, 103, 107, 111, 116, 115btwnhl1 25552 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑦)𝐴)
11811, 12, 27, 104, 107, 110, 103, 117hlcomd 25544 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐴((hlG‘𝐺)‘𝑦)𝑧)
11911, 22, 12, 14, 13, 102, 103, 27, 107, 104, 106, 108, 109, 118opphl 25691 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑂𝐶)
12058ad3antrrr 766 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐷)
12159ad3antrrr 766 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑃)
122 simplrl 817 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧 ∈ (𝑥𝐼𝐵))
123 nelne2 2920 . . . . . . . . . . . 12 ((𝑥𝐷 ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
124120, 112, 123syl2anc 694 . . . . . . . . . . 11 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝑧)
125124necomd 2878 . . . . . . . . . 10 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧𝑥)
12611, 22, 12, 103, 121, 104, 105, 122, 125tgbtwnne 25430 . . . . . . . . 9 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑥𝐵)
12711, 12, 27, 121, 105, 104, 103, 107, 122, 126, 125btwnhl1 25552 . . . . . . . 8 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝑧((hlG‘𝐺)‘𝑥)𝐵)
12811, 22, 12, 14, 13, 102, 103, 27, 104, 105, 106, 119, 120, 127opphl 25691 . . . . . . 7 (((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) ∧ ¬ 𝑧𝐷) → 𝐵𝑂𝐶)
129101, 128pm2.61dan 849 . . . . . 6 ((((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴))) → 𝐵𝑂𝐶)
13011, 22, 12, 25, 29, 32, 63, 59, 38, 89, 93axtgpasch 25411 . . . . . 6 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝐵) ∧ 𝑧 ∈ (𝑦𝐼𝐴)))
131129, 130r19.29a 3107 . . . . 5 ((((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐵𝐼𝑑)) → 𝐵𝑂𝐶)
13211, 22, 12, 14, 31, 62islnopp 25676 . . . . . . . . 9 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐵𝑂𝑑 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))))
13365, 132mpbid 222 . . . . . . . 8 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐵𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑)))
134133simprd 478 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑))
135 eleq1 2718 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (𝐵𝐼𝑑) ↔ 𝑦 ∈ (𝐵𝐼𝑑)))
136135cbvrexv 3202 . . . . . . 7 (∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝑑) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
137134, 136sylib 208 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
138137ad2antrr 762 . . . . 5 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → ∃𝑦𝐷 𝑦 ∈ (𝐵𝐼𝑑))
139131, 138r19.29a 3107 . . . 4 ((((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) ∧ 𝑥𝐷) ∧ 𝑥 ∈ (𝐴𝐼𝑑)) → 𝐵𝑂𝐶)
14011, 22, 12, 14, 28, 62islnopp 25676 . . . . . . 7 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → (𝐴𝑂𝑑 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))))
14183, 140mpbid 222 . . . . . 6 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ((¬ 𝐴𝐷 ∧ ¬ 𝑑𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑)))
142141simprd 478 . . . . 5 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑))
143 eleq1 2718 . . . . . 6 (𝑡 = 𝑥 → (𝑡 ∈ (𝐴𝐼𝑑) ↔ 𝑥 ∈ (𝐴𝐼𝑑)))
144143cbvrexv 3202 . . . . 5 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑑) ↔ ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
145142, 144sylib 208 . . . 4 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → ∃𝑥𝐷 𝑥 ∈ (𝐴𝐼𝑑))
146139, 145r19.29a 3107 . . 3 ((((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) ∧ 𝑑𝑃) ∧ (𝐴𝑂𝑑𝐵𝑂𝑑)) → 𝐵𝑂𝐶)
14719biimpa 500 . . 3 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → ∃𝑑𝑃 (𝐴𝑂𝑑𝐵𝑂𝑑))
148146, 147r19.29a 3107 . 2 ((𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵) → 𝐵𝑂𝐶)
14921, 148impbida 895 1 (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604   class class class wbr 4685  {copab 4745  ran crn 5144  cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  hlGchlg 25540  hpGchpg 25694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkgld 25396  df-trkg 25397  df-cgrg 25451  df-leg 25523  df-hlg 25541  df-mir 25593  df-rag 25634  df-perpg 25636  df-hpg 25695
This theorem is referenced by:  lnoppnhpg  25701  hpgtr  25705  colhp  25707  lnperpex  25740  trgcopyeulem  25742
  Copyright terms: Public domain W3C validator