MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnperpex Structured version   Visualization version   GIF version

Theorem lnperpex 25676
Description: Existence of a perpendicular to a line 𝐿 at a given point 𝐴. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lnperpex.a (𝜑𝐴𝐷)
lnperpex.q (𝜑𝑄𝑃)
lnperpex.1 (𝜑 → ¬ 𝑄𝐷)
Assertion
Ref Expression
lnperpex (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
Distinct variable groups:   ,𝑎,𝑏,𝑝,𝑡   𝐴,𝑎,𝑏,𝑝,𝑡   𝐷,𝑎,𝑏,𝑝,𝑡   𝐺,𝑎,𝑏,𝑝,𝑡   𝐼,𝑎,𝑏,𝑝,𝑡   𝐿,𝑎,𝑏,𝑝,𝑡   𝑂,𝑎,𝑏,𝑝,𝑡   𝑃,𝑎,𝑏,𝑝,𝑡   𝑄,𝑎,𝑏,𝑝,𝑡   𝜑,𝑎,𝑏,𝑝,𝑡

Proof of Theorem lnperpex
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmiopp.p . . . . . 6 𝑃 = (Base‘𝐺)
2 lmiopp.m . . . . . 6 = (dist‘𝐺)
3 lmiopp.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 lmiopp.l . . . . . 6 𝐿 = (LineG‘𝐺)
5 lmiopp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 761 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐺 ∈ TarskiG)
76ad2antrr 761 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐺 ∈ TarskiG)
87adantr 481 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐺 ∈ TarskiG)
9 simprl 793 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝑃)
10 lmiopp.d . . . . . . . . . 10 (𝜑𝐷 ∈ ran 𝐿)
11 lnperpex.a . . . . . . . . . 10 (𝜑𝐴𝐷)
121, 4, 3, 5, 10, 11tglnpt 25425 . . . . . . . . 9 (𝜑𝐴𝑃)
1312ad2antrr 761 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐴𝑃)
1413ad3antrrr 765 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐴𝑃)
15 simprrl 803 . . . . . . . . . 10 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
164, 8, 15perpln1 25586 . . . . . . . . 9 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐴𝐿𝑝) ∈ ran 𝐿)
171, 3, 4, 8, 14, 9, 16tglnne 25504 . . . . . . . 8 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐴𝑝)
1817necomd 2846 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝐴)
191, 3, 4, 8, 9, 14, 18tgelrnln 25506 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴) ∈ ran 𝐿)
2010ad2antrr 761 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐷 ∈ ran 𝐿)
2120ad2antrr 761 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐷 ∈ ran 𝐿)
2221adantr 481 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐷 ∈ ran 𝐿)
231, 3, 4, 8, 9, 14, 18tglinecom 25511 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴) = (𝐴𝐿𝑝))
2423, 15eqbrtrd 4666 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴)(⟂G‘𝐺)𝐷)
251, 2, 3, 4, 8, 19, 22, 24perpcom 25589 . . . . 5 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐷(⟂G‘𝐺)(𝑝𝐿𝐴))
26 simpr 477 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑄𝑂𝑐)
2726adantr 481 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑄𝑂𝑐)
28 lmiopp.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
29 lnperpex.q . . . . . . . . . 10 (𝜑𝑄𝑃)
3029ad2antrr 761 . . . . . . . . 9 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝑄𝑃)
3130ad2antrr 761 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑄𝑃)
3231adantr 481 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑄𝑃)
33 simplr 791 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑐𝑃)
3433adantr 481 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑐𝑃)
35 simprrr 804 . . . . . . . 8 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑐𝑂𝑝)
361, 2, 3, 28, 4, 22, 8, 34, 9, 35oppcom 25617 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝑂𝑐)
371, 3, 4, 28, 8, 22, 9, 32, 34, 36lnopp2hpgb 25636 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑄𝑂𝑐𝑝((hpG‘𝐺)‘𝐷)𝑄))
3827, 37mpbid 222 . . . . 5 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝((hpG‘𝐺)‘𝐷)𝑄)
3925, 38jca 554 . . . 4 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
40 eqid 2620 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
4111ad2antrr 761 . . . . . 6 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐴𝐷)
4241ad2antrr 761 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐴𝐷)
431, 2, 3, 28, 4, 21, 7, 31, 33, 26oppne2 25615 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ¬ 𝑐𝐷)
44 lmiopp.h . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
4544ad2antrr 761 . . . . . 6 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐺DimTarskiG≥2)
4645ad2antrr 761 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐺DimTarskiG≥2)
471, 2, 3, 28, 4, 21, 7, 40, 42, 33, 43, 46oppperpex 25626 . . . 4 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))
4839, 47reximddv 3015 . . 3 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
49 lnperpex.1 . . . . 5 (𝜑 → ¬ 𝑄𝐷)
501, 3, 4, 5, 10, 29, 28, 49hpgerlem 25638 . . . 4 (𝜑 → ∃𝑐𝑃 𝑄𝑂𝑐)
5150ad2antrr 761 . . 3 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → ∃𝑐𝑃 𝑄𝑂𝑐)
5248, 51r19.29a 3074 . 2 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
531, 3, 4, 5, 10, 11tglnpt2 25517 . 2 (𝜑 → ∃𝑑𝐷 𝐴𝑑)
5452, 53r19.29a 3074 1 (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910  cdif 3564   class class class wbr 4644  {copab 4703  ran crn 5105  cfv 5876  (class class class)co 6635  2c2 11055  Basecbs 15838  distcds 15931  TarskiGcstrkg 25310  DimTarskiGcstrkgld 25314  Itvcitv 25316  LineGclng 25317  hlGchlg 25476  ⟂Gcperpg 25571  hpGchpg 25630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-hash 13101  df-word 13282  df-concat 13284  df-s1 13285  df-s2 13574  df-s3 13575  df-trkgc 25328  df-trkgb 25329  df-trkgcb 25330  df-trkgld 25332  df-trkg 25333  df-cgrg 25387  df-leg 25459  df-hlg 25477  df-mir 25529  df-rag 25570  df-perpg 25572  df-hpg 25631
This theorem is referenced by:  trgcopy  25677
  Copyright terms: Public domain W3C validator