MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot1 Structured version   Visualization version   GIF version

Theorem lnrot1 26412
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lnrot1.1 (𝜑𝑌 ∈ (𝑍𝐿𝑋))
lnrot1.2 (𝜑𝑍𝑋)
Assertion
Ref Expression
lnrot1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lnrot1
StepHypRef Expression
1 lnrot1.1 . 2 (𝜑𝑌 ∈ (𝑍𝐿𝑋))
2 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2824 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
7 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
8 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
92, 3, 4, 5, 6, 7, 8tgbtwncomb 26278 . . . . 5 (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
10 biidd 264 . . . . 5 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
112, 3, 4, 5, 7, 6, 8tgbtwncomb 26278 . . . . 5 (𝜑 → (𝑌 ∈ (𝑍𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
129, 10, 113orbi123d 1431 . . . 4 (𝜑 → ((𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
13 3orrot 1088 . . . . 5 ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))
1413a1i 11 . . . 4 (𝜑 → ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋))))
15 btwnlng1.l . . . . 5 𝐿 = (LineG‘𝐺)
16 btwnlng1.d . . . . 5 (𝜑𝑋𝑌)
172, 15, 4, 5, 8, 6, 16, 7tgellng 26342 . . . 4 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1812, 14, 173bitr4rd 314 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌))))
19 lnrot1.2 . . . 4 (𝜑𝑍𝑋)
202, 15, 4, 5, 7, 8, 19, 6tgellng 26342 . . 3 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌))))
2118, 20bitr4d 284 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑌 ∈ (𝑍𝐿𝑋)))
221, 21mpbird 259 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3o 1082   = wceq 1536  wcel 2113  wne 3019  cfv 6358  (class class class)co 7159  Basecbs 16486  distcds 16577  TarskiGcstrkg 26219  Itvcitv 26225  LineGclng 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-trkgc 26237  df-trkgb 26238  df-trkgcb 26239  df-trkg 26242
This theorem is referenced by:  tglineelsb2  26421  tglineneq  26433  coltr3  26437  hlperpnel  26514  opphllem4  26539  lmieu  26573
  Copyright terms: Public domain W3C validator