MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnrot1 Structured version   Visualization version   GIF version

Theorem lnrot1 25232
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lnrot1.1 (𝜑𝑌 ∈ (𝑍𝐿𝑋))
lnrot1.2 (𝜑𝑍𝑋)
Assertion
Ref Expression
lnrot1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lnrot1
StepHypRef Expression
1 lnrot1.1 . 2 (𝜑𝑌 ∈ (𝑍𝐿𝑋))
2 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2605 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
6 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
7 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
8 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
92, 3, 4, 5, 6, 7, 8tgbtwncomb 25097 . . . . 5 (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
10 biidd 250 . . . . 5 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
112, 3, 4, 5, 7, 6, 8tgbtwncomb 25097 . . . . 5 (𝜑 → (𝑌 ∈ (𝑍𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
129, 10, 113orbi123d 1389 . . . 4 (𝜑 → ((𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
13 3orrot 1036 . . . . 5 ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))
1413a1i 11 . . . 4 (𝜑 → ((𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋))))
15 btwnlng1.l . . . . 5 𝐿 = (LineG‘𝐺)
16 btwnlng1.d . . . . 5 (𝜑𝑋𝑌)
172, 15, 4, 5, 8, 6, 16, 7tgellng 25162 . . . 4 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1812, 14, 173bitr4rd 299 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌))))
19 lnrot1.2 . . . 4 (𝜑𝑍𝑋)
202, 15, 4, 5, 7, 8, 19, 6tgellng 25162 . . 3 (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ↔ (𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑋 ∈ (𝑍𝐼𝑌))))
2118, 20bitr4d 269 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑌 ∈ (𝑍𝐿𝑋)))
221, 21mpbird 245 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  w3o 1029   = wceq 1474  wcel 1975  wne 2775  cfv 5786  (class class class)co 6523  Basecbs 15637  distcds 15719  TarskiGcstrkg 25042  Itvcitv 25048  LineGclng 25049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pr 4824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-iota 5750  df-fun 5788  df-fv 5794  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-trkgc 25060  df-trkgb 25061  df-trkgcb 25062  df-trkg 25065
This theorem is referenced by:  tglineelsb2  25241  tglineneq  25253  coltr3  25257  hlperpnel  25331  opphllem4  25356  lmieu  25390
  Copyright terms: Public domain W3C validator