MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnxfr Structured version   Visualization version   GIF version

Theorem lnxfr 25442
Description: Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.c (𝜑𝐶𝑃)
lnxfr.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnxfr.2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
Assertion
Ref Expression
lnxfr (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))

Proof of Theorem lnxfr
StepHypRef Expression
1 tglngval.p . . 3 𝑃 = (Base‘𝐺)
2 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
3 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG)
6 lnxfr.a . . . 4 (𝜑𝐴𝑃)
76adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴𝑃)
8 lnxfr.c . . . 4 (𝜑𝐶𝑃)
98adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶𝑃)
10 lnxfr.b . . . 4 (𝜑𝐵𝑃)
1110adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵𝑃)
12 eqid 2620 . . . 4 (dist‘𝐺) = (dist‘𝐺)
13 lnxfr.r . . . 4 = (cgrG‘𝐺)
14 tglngval.x . . . . 5 (𝜑𝑋𝑃)
1514adantr 481 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑃)
16 tglngval.y . . . . 5 (𝜑𝑌𝑃)
1716adantr 481 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌𝑃)
18 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
1918adantr 481 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍𝑃)
20 lnxfr.2 . . . . 5 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
2120adantr 481 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
22 simpr 477 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍))
231, 12, 3, 13, 5, 15, 17, 19, 7, 11, 9, 21, 22tgbtwnxfr 25406 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶))
241, 2, 3, 5, 7, 9, 11, 23btwncolg1 25431 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
254adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG)
266adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴𝑃)
278adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶𝑃)
2810adantr 481 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵𝑃)
2916adantr 481 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌𝑃)
3014adantr 481 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋𝑃)
3118adantr 481 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍𝑃)
3220adantr 481 . . . . 5 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
331, 12, 3, 13, 25, 30, 29, 31, 26, 28, 27, 32cgr3swap12 25399 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑌𝑋𝑍”⟩ ⟨“𝐵𝐴𝐶”⟩)
34 simpr 477 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍))
351, 12, 3, 13, 25, 29, 30, 31, 28, 26, 27, 33, 34tgbtwnxfr 25406 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶))
361, 2, 3, 25, 26, 27, 28, 35btwncolg2 25432 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
374adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
386adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
398adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶𝑃)
4010adantr 481 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
4114adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
4218adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
4316adantr 481 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
4420adantr 481 . . . . 5 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
451, 12, 3, 13, 37, 41, 43, 42, 38, 40, 39, 44cgr3swap23 25400 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝐶𝐵”⟩)
46 simpr 477 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
471, 12, 3, 13, 37, 41, 42, 43, 38, 39, 40, 45, 46tgbtwnxfr 25406 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵))
481, 2, 3, 37, 38, 39, 40, 47btwncolg3 25433 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
49 lnxfr.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
501, 2, 3, 4, 14, 18, 16tgcolg 25430 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
5149, 50mpbid 222 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
5224, 36, 48, 51mpjao3dan 1393 1 (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3o 1035   = wceq 1481  wcel 1988   class class class wbr 4644  cfv 5876  (class class class)co 6635  ⟨“cs3 13568  Basecbs 15838  distcds 15931  TarskiGcstrkg 25310  Itvcitv 25316  LineGclng 25317  cgrGccgrg 25386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-hash 13101  df-word 13282  df-concat 13284  df-s1 13285  df-s2 13574  df-s3 13575  df-trkgc 25328  df-trkgb 25329  df-trkgcb 25330  df-trkg 25333  df-cgrg 25387
This theorem is referenced by:  symquadlem  25565  midexlem  25568  trgcopy  25677
  Copyright terms: Public domain W3C validator