MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Visualization version   GIF version

Theorem lo1le 14324
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1 (𝜑𝑀 ∈ ℝ)
lo1le.2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1le.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1le.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1le.5 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
Assertion
Ref Expression
lo1le (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1le
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 simpr 477 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 lo1le.1 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
43adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑀 ∈ ℝ)
52, 4ifcld 4108 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ)
63ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑀 ∈ ℝ)
7 simplr 791 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑦 ∈ ℝ)
8 lo1le.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑉)
98ralrimiva 2961 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
10 dmmptg 5596 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 lo1dm 14192 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstr3d 3624 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
1514ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝐴 ⊆ ℝ)
16 simprr 795 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
1715, 16sseldd 3588 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ)
18 maxle 11973 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
196, 7, 17, 18syl3anc 1323 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 ↔ (𝑀𝑥𝑦𝑥)))
20 simpr 477 . . . . . . . . . . 11 ((𝑀𝑥𝑦𝑥) → 𝑦𝑥)
2119, 20syl6bi 243 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝑦𝑥))
2221imim1d 82 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚)))
23 lo1le.5 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2423adantlr 750 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
2524adantrll 757 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶𝐵)
26 simpl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝜑)
27 simplr 791 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥) → 𝑥𝐴)
28 lo1le.4 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2926, 27, 28syl2an 494 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐶 ∈ ℝ)
308, 1lo1mptrcl 14294 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3126, 27, 30syl2an 494 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝐵 ∈ ℝ)
32 simprll 801 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → 𝑚 ∈ ℝ)
33 letr 10083 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3429, 31, 32, 33syl3anc 1323 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → ((𝐶𝐵𝐵𝑚) → 𝐶𝑚))
3525, 34mpand 710 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ ((𝑚 ∈ ℝ ∧ 𝑥𝐴) ∧ 𝑀𝑥)) → (𝐵𝑚𝐶𝑚))
3635expr 642 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (𝑀𝑥 → (𝐵𝑚𝐶𝑚)))
3736adantrd 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑀𝑥𝑦𝑥) → (𝐵𝑚𝐶𝑚)))
3819, 37sylbid 230 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥 → (𝐵𝑚𝐶𝑚)))
3938a2d 29 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4022, 39syld 47 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℝ ∧ 𝑥𝐴)) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4140anassrs 679 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑚) → (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4241ralimdva 2957 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4342reximdva 3012 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
44 breq1 4621 . . . . . . . 8 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (𝑧𝑥 ↔ if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥))
4544imbi1d 331 . . . . . . 7 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → ((𝑧𝑥𝐶𝑚) ↔ (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4645rexralbidv 3052 . . . . . 6 (𝑧 = if(𝑀𝑦, 𝑦, 𝑀) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚) ↔ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)))
4746rspcev 3298 . . . . 5 ((if(𝑀𝑦, 𝑦, 𝑀) ∈ ℝ ∧ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (if(𝑀𝑦, 𝑦, 𝑀) ≤ 𝑥𝐶𝑚)) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚))
485, 43, 47syl6an 567 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
4948rexlimdva 3025 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) → ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5014, 30ello1mpt 14194 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
5114, 28ello1mpt 14194 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑧 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥𝐶𝑚)))
5249, 50, 513imtr4d 283 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
531, 52mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  wss 3559  ifcif 4063   class class class wbr 4618  cmpt 4678  dom cdm 5079  cr 9887  cle 10027  ≤𝑂(1)clo1 14160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-pre-lttri 9962  ax-pre-lttrn 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-ico 12131  df-lo1 14164
This theorem is referenced by:  o1le  14325  vmalogdivsum2  25144  pntrlog2bndlem1  25183  pntrlog2bndlem5  25187
  Copyright terms: Public domain W3C validator