MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1o1 Structured version   Visualization version   GIF version

Theorem lo1o1 14197
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1o1 (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))

Proof of Theorem lo1o1
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 14195 . . 3 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2 fdm 6008 . . . 4 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
32sseq1d 3611 . . 3 (𝐹:𝐴⟶ℂ → (dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
41, 3syl5ib 234 . 2 (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ))
5 lo1dm 14184 . . 3 ((abs ∘ 𝐹) ∈ ≤𝑂(1) → dom (abs ∘ 𝐹) ⊆ ℝ)
6 absf 14011 . . . . . 6 abs:ℂ⟶ℝ
7 fco 6015 . . . . . 6 ((abs:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (abs ∘ 𝐹):𝐴⟶ℝ)
86, 7mpan 705 . . . . 5 (𝐹:𝐴⟶ℂ → (abs ∘ 𝐹):𝐴⟶ℝ)
9 fdm 6008 . . . . 5 ((abs ∘ 𝐹):𝐴⟶ℝ → dom (abs ∘ 𝐹) = 𝐴)
108, 9syl 17 . . . 4 (𝐹:𝐴⟶ℂ → dom (abs ∘ 𝐹) = 𝐴)
1110sseq1d 3611 . . 3 (𝐹:𝐴⟶ℂ → (dom (abs ∘ 𝐹) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
125, 11syl5ib 234 . 2 (𝐹:𝐴⟶ℂ → ((abs ∘ 𝐹) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
13 fvco3 6232 . . . . . . . . 9 ((𝐹:𝐴⟶ℂ ∧ 𝑦𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
1413adantlr 750 . . . . . . . 8 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → ((abs ∘ 𝐹)‘𝑦) = (abs‘(𝐹𝑦)))
1514breq1d 4623 . . . . . . 7 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → (((abs ∘ 𝐹)‘𝑦) ≤ 𝑚 ↔ (abs‘(𝐹𝑦)) ≤ 𝑚))
1615imbi2d 330 . . . . . 6 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑦𝐴) → ((𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
1716ralbidva 2979 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
18172rexbidv 3050 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
19 ello12 14181 . . . . 5 (((abs ∘ 𝐹):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚)))
208, 19sylan 488 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → ((abs ∘ 𝐹) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((abs ∘ 𝐹)‘𝑦) ≤ 𝑚)))
21 elo12 14192 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2218, 20, 213bitr4rd 301 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))
2322ex 450 . 2 (𝐹:𝐴⟶ℂ → (𝐴 ⊆ ℝ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))))
244, 12, 23pm5.21ndd 369 1 (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  wss 3555   class class class wbr 4613  dom cdm 5074  ccom 5078  wf 5843  cfv 5847  cc 9878  cr 9879  cle 10019  abscabs 13908  𝑂(1)co1 14151  ≤𝑂(1)clo1 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-o1 14155  df-lo1 14156
This theorem is referenced by:  lo1o12  14198  o1res  14225
  Copyright terms: Public domain W3C validator