MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmn0 Structured version   Visualization version   GIF version

Theorem logdmn0 25225
Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmn0 (𝐴𝐷𝐴 ≠ 0)

Proof of Theorem logdmn0
StepHypRef Expression
1 0nrp 12427 . . . 4 ¬ 0 ∈ ℝ+
2 0re 10645 . . . . 5 0 ∈ ℝ
3 logcn.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
43ellogdm 25224 . . . . . 6 (0 ∈ 𝐷 ↔ (0 ∈ ℂ ∧ (0 ∈ ℝ → 0 ∈ ℝ+)))
54simprbi 499 . . . . 5 (0 ∈ 𝐷 → (0 ∈ ℝ → 0 ∈ ℝ+))
62, 5mpi 20 . . . 4 (0 ∈ 𝐷 → 0 ∈ ℝ+)
71, 6mto 199 . . 3 ¬ 0 ∈ 𝐷
8 eleq1 2902 . . 3 (𝐴 = 0 → (𝐴𝐷 ↔ 0 ∈ 𝐷))
97, 8mtbiri 329 . 2 (𝐴 = 0 → ¬ 𝐴𝐷)
109necon2ai 3047 1 (𝐴𝐷𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  cdif 3935  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  -∞cmnf 10675  +crp 12392  (,]cioc 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-addrcl 10600  ax-rnegex 10610  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-rp 12393  df-ioc 12746
This theorem is referenced by:  logdmss  25227  logcnlem2  25228  logcnlem3  25229  logcnlem4  25230  logcnlem5  25231  logcn  25232  dvloglem  25233  logf1o2  25235  logtayl  25245  logtayl2  25247  dvcncxp1  25326  dvcnsqrt  25327  cxpcn  25328  atansssdm  25513  lgamgulmlem2  25609
  Copyright terms: Public domain W3C validator