MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmnrp Structured version   Visualization version   GIF version

Theorem logdmnrp 25216
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmnrp (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)

Proof of Theorem logdmnrp
StepHypRef Expression
1 eldifn 4102 . . 3 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0))
2 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
31, 2eleq2s 2929 . 2 (𝐴𝐷 → ¬ 𝐴 ∈ (-∞(,]0))
4 rpre 12389 . . . . 5 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
52ellogdm 25214 . . . . . . 7 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 500 . . . . . 6 (𝐴𝐷𝐴 ∈ ℂ)
7 negreb 10943 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
86, 7syl 17 . . . . 5 (𝐴𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
94, 8syl5ib 246 . . . 4 (𝐴𝐷 → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
109imp 409 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
1110mnfltd 12511 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴)
12 rpgt0 12393 . . . . . 6 (-𝐴 ∈ ℝ+ → 0 < -𝐴)
1312adantl 484 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴)
1410lt0neg1d 11201 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴))
1513, 14mpbird 259 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0)
16 0re 10635 . . . . 5 0 ∈ ℝ
17 ltle 10721 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
1810, 16, 17sylancl 588 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0))
1915, 18mpd 15 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0)
20 mnfxr 10690 . . . 4 -∞ ∈ ℝ*
21 elioc2 12791 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
2220, 16, 21mp2an 690 . . 3 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
2310, 11, 19, 22syl3anbrc 1337 . 2 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0))
243, 23mtand 814 1 (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  cdif 3931   class class class wbr 5057  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  -cneg 10863  +crp 12381  (,]cioc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-rp 12382  df-ioc 12735
This theorem is referenced by:  dvloglem  25223  logf1o2  25225
  Copyright terms: Public domain W3C validator