MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmnrp Structured version   Visualization version   GIF version

Theorem logdmnrp 24282
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmnrp (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)

Proof of Theorem logdmnrp
StepHypRef Expression
1 eldifn 3716 . . 3 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0))
2 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
31, 2eleq2s 2722 . 2 (𝐴𝐷 → ¬ 𝐴 ∈ (-∞(,]0))
4 rpre 11783 . . . . 5 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
52ellogdm 24280 . . . . . . 7 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 476 . . . . . 6 (𝐴𝐷𝐴 ∈ ℂ)
7 negreb 10291 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
86, 7syl 17 . . . . 5 (𝐴𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
94, 8syl5ib 234 . . . 4 (𝐴𝐷 → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
109imp 445 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
11 mnflt 11901 . . . 4 (𝐴 ∈ ℝ → -∞ < 𝐴)
1210, 11syl 17 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴)
13 rpgt0 11788 . . . . . 6 (-𝐴 ∈ ℝ+ → 0 < -𝐴)
1413adantl 482 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴)
1510lt0neg1d 10542 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴))
1614, 15mpbird 247 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0)
17 0re 9985 . . . . 5 0 ∈ ℝ
18 ltle 10071 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
1910, 17, 18sylancl 693 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0))
2016, 19mpd 15 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0)
21 mnfxr 10041 . . . 4 -∞ ∈ ℝ*
22 elioc2 12175 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
2321, 17, 22mp2an 707 . . 3 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
2410, 12, 20, 23syl3anbrc 1244 . 2 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0))
253, 24mtand 690 1 (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  cdif 3557   class class class wbr 4618  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  -∞cmnf 10017  *cxr 10018   < clt 10019  cle 10020  -cneg 10212  +crp 11776  (,]cioc 12115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-rp 11777  df-ioc 12119
This theorem is referenced by:  dvloglem  24289  logf1o2  24291
  Copyright terms: Public domain W3C validator