MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfaclbnd Structured version   Visualization version   GIF version

Theorem logfaclbnd 24992
Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfaclbnd (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) ≤ (log‘(!‘(⌊‘𝐴))))

Proof of Theorem logfaclbnd
Dummy variables 𝑑 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 11879 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
21times2d 11314 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 · 2) = (𝐴 + 𝐴))
32oveq2d 6706 . . 3 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − (𝐴 · 2)) = ((𝐴 · (log‘𝐴)) − (𝐴 + 𝐴)))
4 relogcl 24367 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
54recnd 10106 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
6 2cnd 11131 . . . 4 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
71, 5, 6subdid 10524 . . 3 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) = ((𝐴 · (log‘𝐴)) − (𝐴 · 2)))
8 rpre 11877 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98, 4remulcld 10108 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ∈ ℝ)
109recnd 10106 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ∈ ℂ)
1110, 1, 1subsub4d 10461 . . 3 (𝐴 ∈ ℝ+ → (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) = ((𝐴 · (log‘𝐴)) − (𝐴 + 𝐴)))
123, 7, 113eqtr4d 2695 . 2 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) = (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴))
139, 8resubcld 10496 . . . 4 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ∈ ℝ)
14 fzfid 12812 . . . . 5 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
15 fzfid 12812 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
16 elfznn 12408 . . . . . . . 8 (𝑑 ∈ (1...𝑛) → 𝑑 ∈ ℕ)
1716adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → 𝑑 ∈ ℕ)
1817nnrecred 11104 . . . . . 6 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → (1 / 𝑑) ∈ ℝ)
1915, 18fsumrecl 14509 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ∈ ℝ)
2014, 19fsumrecl 14509 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ∈ ℝ)
21 rprege0 11885 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
22 flge0nn0 12661 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2321, 22syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
24 faccl 13110 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → (!‘(⌊‘𝐴)) ∈ ℕ)
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (!‘(⌊‘𝐴)) ∈ ℕ)
2625nnrpd 11908 . . . . . 6 (𝐴 ∈ ℝ+ → (!‘(⌊‘𝐴)) ∈ ℝ+)
2726relogcld 24414 . . . . 5 (𝐴 ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
2827, 8readdcld 10107 . . . 4 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + 𝐴) ∈ ℝ)
29 elfznn 12408 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
3029adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
3130nnrecred 11104 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ)
3214, 31fsumrecl 14509 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ)
338, 32remulcld 10108 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) ∈ ℝ)
34 reflcl 12637 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
358, 34syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
3633, 35resubcld 10496 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) ∈ ℝ)
37 harmoniclbnd 24780 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))
38 rpregt0 11884 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
39 lemul2 10914 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ↔ (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))))
404, 32, 38, 39syl3anc 1366 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ↔ (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))))
4137, 40mpbid 222 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)))
42 flle 12640 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
438, 42syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
449, 35, 33, 8, 41, 43le2subd 10685 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)))
4529nnrecred 11104 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝐴)) → (1 / 𝑑) ∈ ℝ)
46 remulcl 10059 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (1 / 𝑑) ∈ ℝ) → (𝐴 · (1 / 𝑑)) ∈ ℝ)
478, 45, 46syl2an 493 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 · (1 / 𝑑)) ∈ ℝ)
48 peano2rem 10386 . . . . . . . 8 ((𝐴 · (1 / 𝑑)) ∈ ℝ → ((𝐴 · (1 / 𝑑)) − 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) ∈ ℝ)
50 fzfid 12812 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝑑...(⌊‘𝐴)) ∈ Fin)
5131adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ)
5250, 51fsumrecl 14509 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ)
538adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
5453, 34syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ ℝ)
55 peano2re 10247 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
5654, 55syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((⌊‘𝐴) + 1) ∈ ℝ)
5730nnred 11073 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ)
58 fllep1 12642 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
598, 58syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
6059adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ≤ ((⌊‘𝐴) + 1))
6153, 56, 57, 60lesub1dd 10681 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴𝑑) ≤ (((⌊‘𝐴) + 1) − 𝑑))
6253, 57resubcld 10496 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴𝑑) ∈ ℝ)
6356, 57resubcld 10496 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (((⌊‘𝐴) + 1) − 𝑑) ∈ ℝ)
6430nnrpd 11908 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
6564rpreccld 11920 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ+)
6662, 63, 65lemul1d 11953 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) ≤ (((⌊‘𝐴) + 1) − 𝑑) ↔ ((𝐴𝑑) · (1 / 𝑑)) ≤ ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑))))
6761, 66mpbid 222 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) · (1 / 𝑑)) ≤ ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
681adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℂ)
6930nncnd 11074 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℂ)
7031recnd 10106 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℂ)
7168, 69, 70subdird 10525 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) · (1 / 𝑑)) = ((𝐴 · (1 / 𝑑)) − (𝑑 · (1 / 𝑑))))
7230nnne0d 11103 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ≠ 0)
7369, 72recidd 10834 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝑑 · (1 / 𝑑)) = 1)
7473oveq2d 6706 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − (𝑑 · (1 / 𝑑))) = ((𝐴 · (1 / 𝑑)) − 1))
7571, 74eqtr2d 2686 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) = ((𝐴𝑑) · (1 / 𝑑)))
76 fsumconst 14566 . . . . . . . . . 10 (((𝑑...(⌊‘𝐴)) ∈ Fin ∧ (1 / 𝑑) ∈ ℂ) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((#‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)))
7750, 70, 76syl2anc 694 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((#‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)))
78 elfzuz3 12377 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ𝑑))
7978adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ (ℤ𝑑))
80 hashfz 13252 . . . . . . . . . . . 12 ((⌊‘𝐴) ∈ (ℤ𝑑) → (#‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) − 𝑑) + 1))
8179, 80syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (#‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) − 𝑑) + 1))
8235recnd 10106 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
8382adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ ℂ)
84 1cnd 10094 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℂ)
8583, 84, 69addsubd 10451 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (((⌊‘𝐴) + 1) − 𝑑) = (((⌊‘𝐴) − 𝑑) + 1))
8681, 85eqtr4d 2688 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (#‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) + 1) − 𝑑))
8786oveq1d 6705 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((#‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)) = ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
8877, 87eqtrd 2685 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
8967, 75, 883brtr4d 4717 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) ≤ Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
9014, 49, 52, 89fsumle 14575 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
9114, 1, 70fsummulc2 14560 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)))
92 ax-1cn 10032 . . . . . . . . . 10 1 ∈ ℂ
93 fsumconst 14566 . . . . . . . . . 10 (((1...(⌊‘𝐴)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝐴))1 = ((#‘(1...(⌊‘𝐴))) · 1))
9414, 92, 93sylancl 695 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))1 = ((#‘(1...(⌊‘𝐴))) · 1))
95 hashfz1 13174 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ ℕ0 → (#‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
9623, 95syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (#‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
9796oveq1d 6705 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((#‘(1...(⌊‘𝐴))) · 1) = ((⌊‘𝐴) · 1))
9882mulid1d 10095 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) · 1) = (⌊‘𝐴))
9994, 97, 983eqtrrd 2690 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))1)
10091, 99oveq12d 6708 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)) − Σ𝑑 ∈ (1...(⌊‘𝐴))1))
10147recnd 10106 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 · (1 / 𝑑)) ∈ ℂ)
10214, 101, 84fsumsub 14564 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)) − Σ𝑑 ∈ (1...(⌊‘𝐴))1))
103100, 102eqtr4d 2688 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1))
104 eqid 2651 . . . . . . . . . . . . . 14 (ℤ‘1) = (ℤ‘1)
105104uztrn2 11743 . . . . . . . . . . . . 13 ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) → 𝑛 ∈ (ℤ‘1))
106105adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → 𝑛 ∈ (ℤ‘1))
107106biantrurd 528 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) ↔ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
108 uzss 11746 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑑) → (ℤ𝑛) ⊆ (ℤ𝑑))
109108ad2antll 765 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → (ℤ𝑛) ⊆ (ℤ𝑑))
110109sseld 3635 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) → (⌊‘𝐴) ∈ (ℤ𝑑)))
111110pm4.71rd 668 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) ↔ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
112107, 111bitr3d 270 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ↔ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
113112pm5.32da 674 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))))
114 ancom 465 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
115 an4 882 . . . . . . . . 9 (((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
116113, 114, 1153bitr4g 303 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))))
117 elfzuzb 12374 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))
118 elfzuzb 12374 . . . . . . . . 9 (𝑑 ∈ (1...𝑛) ↔ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)))
119117, 118anbi12i 733 . . . . . . . 8 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛)) ↔ ((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))))
120 elfzuzb 12374 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)))
121 elfzuzb 12374 . . . . . . . . 9 (𝑛 ∈ (𝑑...(⌊‘𝐴)) ↔ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))
122120, 121anbi12i 733 . . . . . . . 8 ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
123116, 119, 1223bitr4g 303 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴)))))
12418recnd 10106 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → (1 / 𝑑) ∈ ℂ)
125124anasss 680 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛))) → (1 / 𝑑) ∈ ℂ)
12614, 14, 15, 123, 125fsumcom2 14549 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
12790, 103, 1263brtr4d 4717 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
12813, 36, 20, 44, 127letrd 10232 . . . 4 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
12927, 35readdcld 10107 . . . . 5 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) ∈ ℝ)
130 elfznn 12408 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
131130adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
132131nnrpd 11908 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
133132relogcld 24414 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
134 peano2re 10247 . . . . . . . 8 ((log‘𝑛) ∈ ℝ → ((log‘𝑛) + 1) ∈ ℝ)
135133, 134syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛) + 1) ∈ ℝ)
136 nnz 11437 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
137 flid 12649 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (⌊‘𝑛) = 𝑛)
138136, 137syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (⌊‘𝑛) = 𝑛)
139138oveq2d 6706 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1...(⌊‘𝑛)) = (1...𝑛))
140139sumeq1d 14475 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) = Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
141 nnre 11065 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
142 nnge1 11084 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
143 harmonicubnd 24781 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 1 ≤ 𝑛) → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) ≤ ((log‘𝑛) + 1))
144141, 142, 143syl2anc 694 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) ≤ ((log‘𝑛) + 1))
145140, 144eqbrtrrd 4709 . . . . . . . 8 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘𝑛) + 1))
146131, 145syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘𝑛) + 1))
14714, 19, 135, 146fsumle 14575 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1))
148133recnd 10106 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
149 1cnd 10094 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℂ)
15014, 148, 149fsumadd 14514 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) + Σ𝑛 ∈ (1...(⌊‘𝐴))1))
151 logfac 24392 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
15223, 151syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
153 fsumconst 14566 . . . . . . . . . 10 (((1...(⌊‘𝐴)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝐴))1 = ((#‘(1...(⌊‘𝐴))) · 1))
15414, 92, 153sylancl 695 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))1 = ((#‘(1...(⌊‘𝐴))) · 1))
155154, 97, 983eqtrrd 2690 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))1)
156152, 155oveq12d 6708 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) + Σ𝑛 ∈ (1...(⌊‘𝐴))1))
157150, 156eqtr4d 2688 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1) = ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)))
158147, 157breqtrd 4711 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)))
15935, 8, 27, 43leadd2dd 10680 . . . . 5 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16020, 129, 28, 158, 159letrd 10232 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16113, 20, 28, 128, 160letrd 10232 . . 3 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16213, 8, 27lesubaddd 10662 . . 3 (𝐴 ∈ ℝ+ → ((((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) ≤ (log‘(!‘(⌊‘𝐴))) ↔ ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴)))
163161, 162mpbird 247 . 2 (𝐴 ∈ ℝ+ → (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) ≤ (log‘(!‘(⌊‘𝐴))))
16412, 163eqbrtrd 4707 1 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) ≤ (log‘(!‘(⌊‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  +crp 11870  ...cfz 12364  cfl 12631  !cfa 13100  #chash 13157  Σcsu 14460  logclog 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-em 24764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator