MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqrt Structured version   Visualization version   GIF version

Theorem loglesqrt 25266
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
loglesqrt ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))

Proof of Theorem loglesqrt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10631 . . . 4 0 ∈ ℝ
21a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
3 simpl 483 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
4 elicc2 12789 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
51, 3, 4sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
65biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
76simp1d 1134 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ ℝ)
86simp2d 1135 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 0 ≤ 𝑥)
97, 8ge0p1rpd 12449 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → (𝑥 + 1) ∈ ℝ+)
109fvresd 6683 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → ((log ↾ ℝ+)‘(𝑥 + 1)) = (log‘(𝑥 + 1)))
1110mpteq2dva 5152 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) = (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))))
12 eqid 2818 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtopon 23318 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
147ex 413 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ ℝ))
1514ssrdv 3970 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℝ)
16 ax-resscn 10582 . . . . . . . 8 ℝ ⊆ ℂ
1715, 16sstrdi 3976 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ ℂ)
18 resttopon 21697 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (0[,]𝐴) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
1913, 17, 18sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) ∈ (TopOn‘(0[,]𝐴)))
209fmpttd 6871 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+)
21 rpssre 12384 . . . . . . . . . 10 + ⊆ ℝ
2221, 16sstri 3973 . . . . . . . . 9 + ⊆ ℂ
2312addcn 23400 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2423a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
25 ssid 3986 . . . . . . . . . . 11 ℂ ⊆ ℂ
26 cncfmptid 23447 . . . . . . . . . . 11 (((0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
2717, 25, 26sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 𝑥) ∈ ((0[,]𝐴)–cn→ℂ))
28 1cnd 10624 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 1 ∈ ℂ)
2925a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℂ ⊆ ℂ)
30 cncfmptc 23446 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]𝐴) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3128, 17, 29, 30syl3anc 1363 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ 1) ∈ ((0[,]𝐴)–cn→ℂ))
3212, 24, 27, 31cncfmpt2f 23449 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ))
33 cncffvrn 23433 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℂ)) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3422, 32, 33sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+) ↔ (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)):(0[,]𝐴)⟶ℝ+))
3520, 34mpbird 258 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ ((0[,]𝐴)–cn→ℝ+))
36 eqid 2818 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t (0[,]𝐴)) = ((TopOpen‘ℂfld) ↾t (0[,]𝐴))
37 eqid 2818 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t+) = ((TopOpen‘ℂfld) ↾t+)
3812, 36, 37cncfcn 23444 . . . . . . . 8 (((0[,]𝐴) ⊆ ℂ ∧ ℝ+ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
3917, 22, 38sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ+) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
4035, 39eleqtrd 2912 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (𝑥 + 1)) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t+)))
41 relogcn 25148 . . . . . . . 8 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
42 eqid 2818 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
4312, 37, 42cncfcn 23444 . . . . . . . . 9 ((ℝ+ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4422, 16, 43mp2an 688 . . . . . . . 8 (ℝ+cn→ℝ) = (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4541, 44eleqtri 2908 . . . . . . 7 (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4645a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) ∈ (((TopOpen‘ℂfld) ↾t+) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4719, 40, 46cnmpt11f 22200 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4812, 36, 42cncfcn 23444 . . . . . 6 (((0[,]𝐴) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4917, 16, 48sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((0[,]𝐴)–cn→ℝ) = (((TopOpen‘ℂfld) ↾t (0[,]𝐴)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5047, 49eleqtrrd 2913 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ ((log ↾ ℝ+)‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
5111, 50eqeltrrd 2911 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (log‘(𝑥 + 1))) ∈ ((0[,]𝐴)–cn→ℝ))
52 reelprrecn 10617 . . . . 5 ℝ ∈ {ℝ, ℂ}
5352a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
54 simpr 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
55 1rp 12381 . . . . . . 7 1 ∈ ℝ+
56 rpaddcl 12399 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5754, 55, 56sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
5857relogcld 25133 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℝ)
5958recnd 10657 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘(𝑥 + 1)) ∈ ℂ)
6057rpreccld 12429 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℝ+)
61 1cnd 10624 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
62 relogcl 25086 . . . . . . . 8 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
6362adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
6463recnd 10657 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
65 rpreccl 12403 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
6665adantl 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
67 peano2re 10801 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
6867adantl 482 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
6968recnd 10657 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℂ)
70 1cnd 10624 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
7116a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ ⊆ ℂ)
7271sselda 3964 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
7353dvmptid 24481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
74 0cnd 10622 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
7553, 28dvmptc 24482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
7653, 72, 70, 73, 70, 74, 75dvmptadd 24484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ (1 + 0)))
77 1p0e1 11749 . . . . . . . . 9 (1 + 0) = 1
7877mpteq2i 5149 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (1 + 0)) = (𝑥 ∈ ℝ ↦ 1)
7976, 78syl6eq 2869 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ ↦ 1))
8021a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ⊆ ℝ)
8112tgioo2 23338 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
82 ioorp 12802 . . . . . . . . 9 (0(,)+∞) = ℝ+
83 iooretop 23301 . . . . . . . . 9 (0(,)+∞) ∈ (topGen‘ran (,))
8482, 83eqeltrri 2907 . . . . . . . 8 + ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
8653, 69, 70, 79, 80, 81, 12, 85dvmptres 24487 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + 1))) = (𝑥 ∈ ℝ+ ↦ 1))
87 dvrelog 25147 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
88 relogf1o 25077 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
89 f1of 6608 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
9088, 89mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
9190feqmptd 6726 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
92 fvres 6682 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
9392mpteq2ia 5148 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
9491, 93syl6eq 2869 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
9594oveq2d 7161 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
9687, 95syl5reqr 2868 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
97 fveq2 6663 . . . . . 6 (𝑦 = (𝑥 + 1) → (log‘𝑦) = (log‘(𝑥 + 1)))
98 oveq2 7153 . . . . . 6 (𝑦 = (𝑥 + 1) → (1 / 𝑦) = (1 / (𝑥 + 1)))
9953, 53, 57, 61, 64, 66, 86, 96, 97, 98dvmptco 24496 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)))
10060rpcnd 12421 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ∈ ℂ)
101100mulid1d 10646 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 / (𝑥 + 1)) · 1) = (1 / (𝑥 + 1)))
102101mpteq2dva 5152 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 / (𝑥 + 1)) · 1)) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
10399, 102eqtrd 2853 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ ℝ+ ↦ (1 / (𝑥 + 1))))
104 ioossicc 12810 . . . . . . . . 9 (0(,)𝐴) ⊆ (0[,]𝐴)
105104sseli 3960 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ (0[,]𝐴))
106105, 7sylan2 592 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ)
107 eliooord 12784 . . . . . . . . 9 (𝑥 ∈ (0(,)𝐴) → (0 < 𝑥𝑥 < 𝐴))
108107simpld 495 . . . . . . . 8 (𝑥 ∈ (0(,)𝐴) → 0 < 𝑥)
109108adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 0 < 𝑥)
110106, 109elrpd 12416 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → 𝑥 ∈ ℝ+)
111110ex 413 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0(,)𝐴) → 𝑥 ∈ ℝ+))
112111ssrdv 3970 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ⊆ ℝ+)
113 iooretop 23301 . . . . 5 (0(,)𝐴) ∈ (topGen‘ran (,))
114113a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0(,)𝐴) ∈ (topGen‘ran (,)))
11553, 59, 60, 103, 112, 81, 12, 114dvmptres 24487 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (log‘(𝑥 + 1)))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (𝑥 + 1))))
116 elrege0 12830 . . . . . . . . 9 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
1177, 8, 116sylanbrc 583 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0[,]𝐴)) → 𝑥 ∈ (0[,)+∞))
118117ex 413 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) → 𝑥 ∈ (0[,)+∞)))
119118ssrdv 3970 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0[,]𝐴) ⊆ (0[,)+∞))
120119resabs1d 5877 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (√ ↾ (0[,]𝐴)))
121 sqrtf 14711 . . . . . . 7 √:ℂ⟶ℂ
122121a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → √:ℂ⟶ℂ)
123122, 17feqresmpt 6727 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√ ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
124120, 123eqtrd 2853 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) = (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)))
125 resqrtcn 25257 . . . . 5 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
126 rescncf 23432 . . . . 5 ((0[,]𝐴) ⊆ (0[,)+∞) → ((√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ)))
127119, 125, 126mpisyl 21 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√ ↾ (0[,)+∞)) ↾ (0[,]𝐴)) ∈ ((0[,]𝐴)–cn→ℝ))
128124, 127eqeltrrd 2911 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑥 ∈ (0[,]𝐴) ↦ (√‘𝑥)) ∈ ((0[,]𝐴)–cn→ℝ))
129 rpcn 12387 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
130129adantl 482 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
131130sqrtcld 14785 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
132 2rp 12382 . . . . . 6 2 ∈ ℝ+
133 rpsqrtcl 14612 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
134133adantl 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
135 rpmulcl 12400 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
136132, 134, 135sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
137136rpreccld 12429 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
138 dvsqrt 25250 . . . . 5 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
139138a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
14053, 131, 137, 139, 112, 81, 12, 114dvmptres 24487 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℝ D (𝑥 ∈ (0(,)𝐴) ↦ (√‘𝑥))) = (𝑥 ∈ (0(,)𝐴) ↦ (1 / (2 · (√‘𝑥)))))
141134rpred 12419 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
142 1re 10629 . . . . . . . . 9 1 ∈ ℝ
143 resubcl 10938 . . . . . . . . 9 (((√‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → ((√‘𝑥) − 1) ∈ ℝ)
144141, 142, 143sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) − 1) ∈ ℝ)
145144sqge0d 13600 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ (((√‘𝑥) − 1)↑2))
146130sqsqrtd 14787 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥)↑2) = 𝑥)
147146oveq1d 7160 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥)↑2) − (2 · (√‘𝑥))) = (𝑥 − (2 · (√‘𝑥))))
148147oveq1d 7160 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1) = ((𝑥 − (2 · (√‘𝑥))) + 1))
149 binom2sub1 13570 . . . . . . . . 9 ((√‘𝑥) ∈ ℂ → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
150131, 149syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((((√‘𝑥)↑2) − (2 · (√‘𝑥))) + 1))
151136rpcnd 12421 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
152130, 61, 151addsubd 11006 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((𝑥 + 1) − (2 · (√‘𝑥))) = ((𝑥 − (2 · (√‘𝑥))) + 1))
153148, 150, 1523eqtr4d 2863 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((√‘𝑥) − 1)↑2) = ((𝑥 + 1) − (2 · (√‘𝑥))))
154145, 153breqtrd 5083 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))))
15557rpred 12419 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ)
156136rpred 12419 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
157155, 156subge0d 11218 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 ≤ ((𝑥 + 1) − (2 · (√‘𝑥))) ↔ (2 · (√‘𝑥)) ≤ (𝑥 + 1)))
158154, 157mpbid 233 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ≤ (𝑥 + 1))
159136, 57lerecd 12438 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ≤ (𝑥 + 1) ↔ (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥)))))
160158, 159mpbid 233 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
161110, 160syldan 591 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ (0(,)𝐴)) → (1 / (𝑥 + 1)) ≤ (1 / (2 · (√‘𝑥))))
162 rexr 10675 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
163 0xr 10676 . . . . 5 0 ∈ ℝ*
164 lbicc2 12840 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
165163, 164mp3an1 1439 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
166162, 165sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ (0[,]𝐴))
167 ubicc2 12841 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
168163, 167mp3an1 1439 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
169162, 168sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
170 simpr 485 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
171 fv0p1e1 11748 . . . 4 (𝑥 = 0 → (log‘(𝑥 + 1)) = (log‘1))
172 log1 25096 . . . 4 (log‘1) = 0
173171, 172syl6eq 2869 . . 3 (𝑥 = 0 → (log‘(𝑥 + 1)) = 0)
174 fveq2 6663 . . . 4 (𝑥 = 0 → (√‘𝑥) = (√‘0))
175 sqrt0 14589 . . . 4 (√‘0) = 0
176174, 175syl6eq 2869 . . 3 (𝑥 = 0 → (√‘𝑥) = 0)
177 fvoveq1 7168 . . 3 (𝑥 = 𝐴 → (log‘(𝑥 + 1)) = (log‘(𝐴 + 1)))
178 fveq2 6663 . . 3 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
1792, 3, 51, 115, 128, 140, 161, 166, 169, 170, 173, 176, 177, 178dvle 24531 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0))
180 ge0p1rp 12408 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
181180relogcld 25133 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ∈ ℝ)
182 resqrtcl 14601 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
183181, 182, 2lesub1d 11235 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((log‘(𝐴 + 1)) ≤ (√‘𝐴) ↔ ((log‘(𝐴 + 1)) − 0) ≤ ((√‘𝐴) − 0)))
184179, 183mpbird 258 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wss 3933  {cpr 4559   class class class wbr 5057  cmpt 5137  ran crn 5549  cres 5550  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  2c2 11680  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  cexp 13417  csqrt 14580  t crest 16682  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473  TopOnctopon 21446   Cn ccn 21760   ×t ctx 22096  cnccncf 23411   D cdv 24388  logclog 25065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-tan 15413  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-cxp 25068
This theorem is referenced by:  rplogsumlem1  25987
  Copyright terms: Public domain W3C validator