MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logrec Structured version   Visualization version   GIF version

Theorem logrec 24414
Description: Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.)
Assertion
Ref Expression
logrec ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))

Proof of Theorem logrec
StepHypRef Expression
1 reccl 10643 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
2 recne0 10649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0)
3 eflog 24240 . . . . . . . 8 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (exp‘(log‘(1 / 𝐴))) = (1 / 𝐴))
41, 2, 3syl2anc 692 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘(1 / 𝐴))) = (1 / 𝐴))
54eqcomd 2627 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (exp‘(log‘(1 / 𝐴))))
65oveq2d 6626 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = (1 / (exp‘(log‘(1 / 𝐴)))))
7 eflog 24240 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
8 recrec 10673 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
97, 8eqtr4d 2658 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (1 / (1 / 𝐴)))
101, 2logcld 24234 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 / 𝐴)) ∈ ℂ)
11 efneg 14760 . . . . . 6 ((log‘(1 / 𝐴)) ∈ ℂ → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴)))))
1210, 11syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴)))))
136, 9, 123eqtr4d 2665 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘-(log‘(1 / 𝐴))))
14133adant3 1079 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (exp‘(log‘𝐴)) = (exp‘-(log‘(1 / 𝐴))))
1514fveq2d 6157 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘(log‘𝐴))) = (log‘(exp‘-(log‘(1 / 𝐴)))))
16 logrncl 24231 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log)
17163adant3 1079 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) ∈ ran log)
18 logef 24245 . . 3 ((log‘𝐴) ∈ ran log → (log‘(exp‘(log‘𝐴))) = (log‘𝐴))
1917, 18syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘(log‘𝐴))) = (log‘𝐴))
20 df-ne 2791 . . . . 5 ((ℑ‘(log‘𝐴)) ≠ π ↔ ¬ (ℑ‘(log‘𝐴)) = π)
21 lognegb 24253 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π))
221, 2, 21syl2anc 692 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π))
2322biimprd 238 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → -(1 / 𝐴) ∈ ℝ+))
24 ax-1cn 9945 . . . . . . . . . . . 12 1 ∈ ℂ
25 divneg2 10700 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴))
2624, 25mp3an1 1408 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴))
2726eleq1d 2683 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (1 / -𝐴) ∈ ℝ+))
2823, 27sylibd 229 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → (1 / -𝐴) ∈ ℝ+))
29 negcl 10232 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
3029adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ∈ ℂ)
31 negeq0 10286 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3231necon3bid 2834 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3332biimpa 501 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
34 rpreccl 11808 . . . . . . . . . . 11 ((1 / -𝐴) ∈ ℝ+ → (1 / (1 / -𝐴)) ∈ ℝ+)
35 recrec 10673 . . . . . . . . . . . 12 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → (1 / (1 / -𝐴)) = -𝐴)
3635eleq1d 2683 . . . . . . . . . . 11 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / (1 / -𝐴)) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
3734, 36syl5ib 234 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+ → -𝐴 ∈ ℝ+))
3830, 33, 37syl2anc 692 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+ → -𝐴 ∈ ℝ+))
3928, 38syld 47 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → -𝐴 ∈ ℝ+))
40 lognegb 24253 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
4139, 40sylibd 229 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → (ℑ‘(log‘𝐴)) = π))
4241con3d 148 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (ℑ‘(log‘𝐴)) = π → ¬ (ℑ‘(log‘(1 / 𝐴))) = π))
43423impia 1258 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬ (ℑ‘(log‘𝐴)) = π) → ¬ (ℑ‘(log‘(1 / 𝐴))) = π)
4420, 43syl3an3b 1361 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → ¬ (ℑ‘(log‘(1 / 𝐴))) = π)
45 logrncl 24231 . . . . . 6 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (log‘(1 / 𝐴)) ∈ ran log)
461, 2, 45syl2anc 692 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 / 𝐴)) ∈ ran log)
47 logreclem 24413 . . . . 5 (((log‘(1 / 𝐴)) ∈ ran log ∧ ¬ (ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran log)
4846, 47stoic3 1698 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬ (ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran log)
4944, 48syld3an3 1368 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → -(log‘(1 / 𝐴)) ∈ ran log)
50 logef 24245 . . 3 (-(log‘(1 / 𝐴)) ∈ ran log → (log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴)))
5149, 50syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴)))
5215, 19, 513eqtr3d 2663 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  ran crn 5080  cfv 5852  (class class class)co 6610  cc 9885  0cc0 9887  1c1 9888  -cneg 10218   / cdiv 10635  +crp 11783  cim 13779  expce 14724  πcpi 14729  logclog 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-log 24220
This theorem is referenced by:  logbrec  24433  isosctrlem2  24462
  Copyright terms: Public domain W3C validator