MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Structured version   Visualization version   GIF version

Theorem logsqvma2 24977
Description: The Möbius inverse of logsqvma 24976. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Distinct variable group:   𝑥,𝑑,𝑁

Proof of Theorem logsqvma2
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12592 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1...𝑘) ∈ Fin)
2 dvdsssfz1 14827 . . . . . . . . . 10 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ (1...𝑘))
3 ssfi 8043 . . . . . . . . . 10 (((1...𝑘) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ (1...𝑘)) → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ∈ Fin)
41, 2, 3syl2anc 691 . . . . . . . . 9 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ∈ Fin)
5 ssrab2 3650 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ ℕ
6 simpr 476 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
75, 6sseldi 3566 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ ℕ)
8 vmacl 24589 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
97, 8syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘𝑑) ∈ ℝ)
10 dvdsdivcl 14825 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
115, 10sseldi 3566 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ ℕ)
12 vmacl 24589 . . . . . . . . . . 11 ((𝑘 / 𝑑) ∈ ℕ → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
1311, 12syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
149, 13remulcld 9927 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
154, 14fsumrecl 14261 . . . . . . . 8 (𝑘 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
16 vmacl 24589 . . . . . . . . 9 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
17 nnrp 11677 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1817relogcld 24118 . . . . . . . . 9 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
1916, 18remulcld 9927 . . . . . . . 8 (𝑘 ∈ ℕ → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
2015, 19readdcld 9926 . . . . . . 7 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℝ)
2120recnd 9925 . . . . . 6 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2221adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
23 eqid 2610 . . . . 5 (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))
2422, 23fmptd 6277 . . . 4 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))):ℕ⟶ℂ)
25 ssrab2 3650 . . . . . . . . 9 {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ ℕ
26 simpr 476 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})
2725, 26sseldi 3566 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ ℕ)
28 breq2 4582 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑥𝑘𝑥𝑚))
2928rabbidv 3164 . . . . . . . . . . 11 (𝑘 = 𝑚 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑚})
30 oveq1 6534 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 / 𝑑) = (𝑚 / 𝑑))
3130fveq2d 6092 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑚 / 𝑑)))
3231oveq2d 6543 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
3332adantr 480 . . . . . . . . . . 11 ((𝑘 = 𝑚𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
3429, 33sumeq12dv 14233 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
35 fveq2 6088 . . . . . . . . . . 11 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
36 fveq2 6088 . . . . . . . . . . 11 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
3735, 36oveq12d 6545 . . . . . . . . . 10 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
3834, 37oveq12d 6545 . . . . . . . . 9 (𝑘 = 𝑚 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
39 ovex 6555 . . . . . . . . 9 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ V
4038, 23, 39fvmpt3i 6181 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
4127, 40syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
4241sumeq2dv 14230 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
43 logsqvma 24976 . . . . . . 7 (𝑛 ∈ ℕ → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4443adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4542, 44eqtr2d 2645 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((log‘𝑛)↑2) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚))
4645mpteq2dva 4667 . . . 4 (𝑁 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚)))
4724, 46muinv 24664 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))))
4847fveq1d 6090 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁))
49 breq2 4582 . . . . . 6 (𝑘 = 𝑁 → (𝑥𝑘𝑥𝑁))
5049rabbidv 3164 . . . . 5 (𝑘 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
51 oveq1 6534 . . . . . . . 8 (𝑘 = 𝑁 → (𝑘 / 𝑑) = (𝑁 / 𝑑))
5251fveq2d 6092 . . . . . . 7 (𝑘 = 𝑁 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑁 / 𝑑)))
5352oveq2d 6543 . . . . . 6 (𝑘 = 𝑁 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5453adantr 480 . . . . 5 ((𝑘 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5550, 54sumeq12dv 14233 . . . 4 (𝑘 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
56 fveq2 6088 . . . . 5 (𝑘 = 𝑁 → (Λ‘𝑘) = (Λ‘𝑁))
57 fveq2 6088 . . . . 5 (𝑘 = 𝑁 → (log‘𝑘) = (log‘𝑁))
5856, 57oveq12d 6545 . . . 4 (𝑘 = 𝑁 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑁) · (log‘𝑁)))
5955, 58oveq12d 6545 . . 3 (𝑘 = 𝑁 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
6059, 23, 39fvmpt3i 6181 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
61 fveq2 6088 . . . . . 6 (𝑗 = 𝑑 → (μ‘𝑗) = (μ‘𝑑))
62 oveq2 6535 . . . . . . . 8 (𝑗 = 𝑑 → (𝑖 / 𝑗) = (𝑖 / 𝑑))
6362fveq2d 6092 . . . . . . 7 (𝑗 = 𝑑 → (log‘(𝑖 / 𝑗)) = (log‘(𝑖 / 𝑑)))
6463oveq1d 6542 . . . . . 6 (𝑗 = 𝑑 → ((log‘(𝑖 / 𝑗))↑2) = ((log‘(𝑖 / 𝑑))↑2))
6561, 64oveq12d 6545 . . . . 5 (𝑗 = 𝑑 → ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)))
6665cbvsumv 14223 . . . 4 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2))
67 breq2 4582 . . . . . 6 (𝑖 = 𝑁 → (𝑥𝑖𝑥𝑁))
6867rabbidv 3164 . . . . 5 (𝑖 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑖} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
69 oveq1 6534 . . . . . . . . 9 (𝑖 = 𝑁 → (𝑖 / 𝑑) = (𝑁 / 𝑑))
7069fveq2d 6092 . . . . . . . 8 (𝑖 = 𝑁 → (log‘(𝑖 / 𝑑)) = (log‘(𝑁 / 𝑑)))
7170oveq1d 6542 . . . . . . 7 (𝑖 = 𝑁 → ((log‘(𝑖 / 𝑑))↑2) = ((log‘(𝑁 / 𝑑))↑2))
7271oveq2d 6543 . . . . . 6 (𝑖 = 𝑁 → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7372adantr 480 . . . . 5 ((𝑖 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7468, 73sumeq12dv 14233 . . . 4 (𝑖 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7566, 74syl5eq 2656 . . 3 (𝑖 = 𝑁 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
76 ssrab2 3650 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑖} ⊆ ℕ
77 dvdsdivcl 14825 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖})
7876, 77sseldi 3566 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ ℕ)
79 fveq2 6088 . . . . . . . . 9 (𝑛 = (𝑖 / 𝑗) → (log‘𝑛) = (log‘(𝑖 / 𝑗)))
8079oveq1d 6542 . . . . . . . 8 (𝑛 = (𝑖 / 𝑗) → ((log‘𝑛)↑2) = ((log‘(𝑖 / 𝑗))↑2))
81 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))
82 ovex 6555 . . . . . . . 8 ((log‘𝑛)↑2) ∈ V
8380, 81, 82fvmpt3i 6181 . . . . . . 7 ((𝑖 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
8478, 83syl 17 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
8584oveq2d 6543 . . . . 5 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8685sumeq2dv 14230 . . . 4 (𝑖 ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8786mpteq2ia 4663 . . 3 (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
88 sumex 14215 . . 3 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) ∈ V
8975, 87, 88fvmpt3i 6181 . 2 (𝑁 ∈ ℕ → ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
9048, 60, 893eqtr3rd 2653 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  wss 3540   class class class wbr 4578  cmpt 4638  cfv 5790  (class class class)co 6527  Fincfn 7819  cc 9791  cr 9792  1c1 9794   + caddc 9796   · cmul 9798   / cdiv 10536  cn 10870  2c2 10920  ...cfz 12155  cexp 12680  Σcsu 14213  cdvds 14770  logclog 24050  Λcvma 24563  μcmu 24566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-disj 4549  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-pi 14591  df-dvds 14771  df-gcd 15004  df-prm 15173  df-pc 15329  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-log 24052  df-vma 24569  df-mu 24572
This theorem is referenced by:  selberg  24982
  Copyright terms: Public domain W3C validator