MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayllem Structured version   Visualization version   GIF version

Theorem logtayllem 25236
Description: Lemma for logtayl 25237. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayllem ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛

Proof of Theorem logtayllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12274 . 2 0 = (ℤ‘0)
2 1nn0 11907 . . 3 1 ∈ ℕ0
32a1i 11 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
4 oveq2 7158 . . . . 5 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
5 eqid 2821 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))
6 ovex 7183 . . . . 5 ((abs‘𝐴)↑𝑘) ∈ V
74, 5, 6fvmpt 6762 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
87adantl 484 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9 abscl 14632 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 483 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 reexpcl 13440 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
1210, 11sylan 582 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
138, 12eqeltrd 2913 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
14 eqeq1 2825 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 = 0 ↔ 𝑘 = 0))
15 oveq2 7158 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
1614, 15ifbieq2d 4491 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 = 0, 0, (1 / 𝑛)) = if(𝑘 = 0, 0, (1 / 𝑘)))
17 oveq2 7158 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
1816, 17oveq12d 7168 . . . . 5 (𝑛 = 𝑘 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
19 eqid 2821 . . . . 5 (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛))) = (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
20 ovex 7183 . . . . 5 (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ V
2118, 19, 20fvmpt 6762 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
2221adantl 484 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
23 0cnd 10628 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
24 nn0cn 11901 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2524adantl 484 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
26 neqne 3024 . . . . . 6 𝑘 = 0 → 𝑘 ≠ 0)
27 reccl 11299 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
2825, 26, 27syl2an 597 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
2923, 28ifclda 4500 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
30 expcl 13441 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3130adantlr 713 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3229, 31mulcld 10655 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
3322, 32eqeltrd 2913 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) ∈ ℂ)
3410recnd 10663 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
35 absidm 14677 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
3635adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
37 simpr 487 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3836, 37eqbrtrd 5080 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) < 1)
3934, 38, 8geolim 15220 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))))
40 seqex 13365 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ V
41 ovex 7183 . . . 4 (1 / (1 − (abs‘𝐴))) ∈ V
4240, 41breldm 5771 . . 3 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
4339, 42syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
44 1red 10636 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
45 elnnuz 12276 . . 3 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
46 nnrecre 11673 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
4746adantl 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
4847recnd 10663 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℂ)
49 nnnn0 11898 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5049, 31sylan2 594 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
5148, 50absmuld 14808 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))))
52 nnrp 12394 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
5352adantl 484 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
5453rpreccld 12435 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
5554rpge0d 12429 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
5647, 55absidd 14776 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(1 / 𝑘)) = (1 / 𝑘))
57 simpl 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
58 absexp 14658 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
5957, 49, 58syl2an 597 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
6056, 59oveq12d 7168 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
6151, 60eqtrd 2856 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
62 1red 10636 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
6349, 12sylan2 594 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
6450absge0d 14798 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (abs‘(𝐴𝑘)))
6564, 59breqtrd 5084 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((abs‘𝐴)↑𝑘))
66 nnge1 11659 . . . . . . . . 9 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
6766adantl 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
68 0lt1 11156 . . . . . . . . . 10 0 < 1
6968a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 1)
70 nnre 11639 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
7170adantl 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
72 nngt0 11662 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
7372adantl 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
74 lerec 11517 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7562, 69, 71, 73, 74syl22anc 836 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7667, 75mpbid 234 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ (1 / 1))
77 1div1e1 11324 . . . . . . 7 (1 / 1) = 1
7876, 77breqtrdi 5099 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ 1)
7947, 62, 63, 65, 78lemul1ad 11573 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8061, 79eqbrtrd 5080 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8149, 22sylan2 594 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
82 nnne0 11665 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8382adantl 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
8483neneqd 3021 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 = 0)
8584iffalsed 4477 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 = 0, 0, (1 / 𝑘)) = (1 / 𝑘))
8685oveq1d 7165 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = ((1 / 𝑘) · (𝐴𝑘)))
8781, 86eqtrd 2856 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = ((1 / 𝑘) · (𝐴𝑘)))
8887fveq2d 6668 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) = (abs‘((1 / 𝑘) · (𝐴𝑘))))
8949, 8sylan2 594 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9089oveq2d 7166 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)) = (1 · ((abs‘𝐴)↑𝑘)))
9180, 88, 903brtr4d 5090 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
9245, 91sylan2br 596 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
931, 3, 13, 33, 43, 44, 92cvgcmpce 15167 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  ifcif 4466   class class class wbr 5058  cmpt 5138  dom cdm 5549  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  0cn0 11891  cuz 12237  +crp 12383  seqcseq 13363  cexp 13423  abscabs 14587  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037
This theorem is referenced by:  logtayl  25237
  Copyright terms: Public domain W3C validator