MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpcls Structured version   Visualization version   GIF version

Theorem lpcls 21971
Description: The limit points of the closure of a subset are the same as the limit points of the set in a T1 space. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
lpcls.1 𝑋 = 𝐽
Assertion
Ref Expression
lpcls ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 t1top 21937 . . . . . . 7 (𝐽 ∈ Fre → 𝐽 ∈ Top)
2 lpcls.1 . . . . . . . . . 10 𝑋 = 𝐽
32clsss3 21666 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
43ssdifssd 4118 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋)
52clsss3 21666 . . . . . . . 8 ((𝐽 ∈ Top ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
64, 5syldan 593 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
71, 6sylan 582 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ 𝑋)
87sseld 3965 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥𝑋))
9 ssdifss 4111 . . . . . . . . . . 11 (𝑆𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
102clscld 21654 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
111, 9, 10syl2an 597 . . . . . . . . . 10 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
1211adantr 483 . . . . . . . . 9 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽))
132t1sncld 21933 . . . . . . . . . . . . 13 ((𝐽 ∈ Fre ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
1413adantlr 713 . . . . . . . . . . . 12 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → {𝑥} ∈ (Clsd‘𝐽))
15 uncld 21648 . . . . . . . . . . . 12 (({𝑥} ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽)) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽))
1614, 12, 15syl2anc 586 . . . . . . . . . . 11 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽))
172sscls 21663 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
181, 9, 17syl2an 597 . . . . . . . . . . . . 13 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
19 ssundif 4432 . . . . . . . . . . . . 13 (𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2018, 19sylibr 236 . . . . . . . . . . . 12 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2120adantr 483 . . . . . . . . . . 11 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
222clsss2 21679 . . . . . . . . . . 11 ((({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2316, 21, 22syl2anc 586 . . . . . . . . . 10 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
24 ssundif 4432 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ ({𝑥} ∪ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) ↔ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2523, 24sylib 220 . . . . . . . . 9 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
262clsss2 21679 . . . . . . . . 9 ((((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2712, 25, 26syl2anc 586 . . . . . . . 8 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
2827sseld 3965 . . . . . . 7 (((𝐽 ∈ Fre ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928ex 415 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥𝑋 → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))))
3029com23 86 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → (𝑥𝑋𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))))
318, 30mpdd 43 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
321adantr 483 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝐽 ∈ Top)
331, 3sylan 582 . . . . . . 7 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
3433ssdifssd 4118 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋)
352sscls 21663 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
361, 35sylan 582 . . . . . . 7 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
3736ssdifd 4116 . . . . . 6 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥}))
382clsss 21661 . . . . . 6 ((𝐽 ∈ Top ∧ (((cls‘𝐽)‘𝑆) ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ (((cls‘𝐽)‘𝑆) ∖ {𝑥})) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))
3932, 34, 37, 38syl3anc 1367 . . . . 5 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})))
4039sseld 3965 . . . 4 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
4131, 40impbid 214 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
422islp 21747 . . . . 5 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
433, 42syldan 593 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
441, 43sylan 582 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((cls‘𝐽)‘(((cls‘𝐽)‘𝑆) ∖ {𝑥}))))
452islp 21747 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
461, 45sylan 582 . . 3 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
4741, 44, 463bitr4d 313 . 2 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
4847eqrdv 2819 1 ((𝐽 ∈ Fre ∧ 𝑆𝑋) → ((limPt‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cdif 3932  cun 3933  wss 3935  {csn 4566   cuni 4837  cfv 6354  Topctop 21500  Clsdccld 21623  clsccl 21625  limPtclp 21741  Frect1 21914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-top 21501  df-cld 21626  df-cls 21628  df-lp 21743  df-t1 21921
This theorem is referenced by:  perfcls  21972
  Copyright terms: Public domain W3C validator