MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpigen Structured version   Visualization version   GIF version

Theorem lpigen 20031
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
lpigen.u 𝑈 = (LIdeal‘𝑅)
lpigen.p 𝑃 = (LPIdeal‘𝑅)
lpigen.d = (∥r𝑅)
Assertion
Ref Expression
lpigen ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐼,𝑦   𝑥,𝑈,𝑦   𝑥,𝑃,𝑦   𝑥, ,𝑦

Proof of Theorem lpigen
StepHypRef Expression
1 lpigen.p . . . 4 𝑃 = (LPIdeal‘𝑅)
2 eqid 2823 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
3 eqid 2823 . . . 4 (Base‘𝑅) = (Base‘𝑅)
41, 2, 3islpidl 20021 . . 3 (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
54adantr 483 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥})))
6 lpigen.u . . . . 5 𝑈 = (LIdeal‘𝑅)
7 lpigen.d . . . . 5 = (∥r𝑅)
83, 6, 2, 7lidldvgen 20030 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
983expa 1114 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
109rexbidva 3298 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)𝐼 = ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
11 simpr 487 . . . 4 ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) → (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))
123, 6lidlss 19985 . . . . . . . 8 (𝐼𝑈𝐼 ⊆ (Base‘𝑅))
1312adantl 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ⊆ (Base‘𝑅))
1413sseld 3968 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥𝐼𝑥 ∈ (Base‘𝑅)))
1514adantrd 494 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → 𝑥 ∈ (Base‘𝑅)))
1615ancrd 554 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦))))
1711, 16impbid2 228 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑥 ∈ (Base‘𝑅) ∧ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)) ↔ (𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦)))
1817rexbidv2 3297 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (∃𝑥 ∈ (Base‘𝑅)(𝑥𝐼 ∧ ∀𝑦𝐼 𝑥 𝑦) ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
195, 10, 183bitrd 307 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐼𝑃 ↔ ∃𝑥𝐼𝑦𝐼 𝑥 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  {csn 4569   class class class wbr 5068  cfv 6357  Basecbs 16485  Ringcrg 19299  rcdsr 19390  LIdealclidl 19944  RSpancrsp 19945  LPIdealclpidl 20016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-mgp 19242  df-ur 19254  df-ring 19301  df-dvdsr 19393  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-lpidl 20018
This theorem is referenced by:  zringlpir  20638
  Copyright terms: Public domain W3C validator