Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnllnneN Structured version   Visualization version   GIF version

Theorem lplnllnneN 34668
 Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnri1.j = (join‘𝐾)
lplnri1.a 𝐴 = (Atoms‘𝐾)
lplnri1.p 𝑃 = (LPlanes‘𝐾)
lplnri1.y 𝑌 = ((𝑄 𝑅) 𝑆)
Assertion
Ref Expression
lplnllnneN ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → (𝑄 𝑆) ≠ (𝑅 𝑆))

Proof of Theorem lplnllnneN
StepHypRef Expression
1 eqid 2621 . . 3 (le‘𝐾) = (le‘𝐾)
2 lplnri1.j . . 3 = (join‘𝐾)
3 lplnri1.a . . 3 𝐴 = (Atoms‘𝐾)
4 lplnri1.p . . 3 𝑃 = (LPlanes‘𝐾)
5 lplnri1.y . . 3 𝑌 = ((𝑄 𝑅) 𝑆)
61, 2, 3, 4, 5lplnriaN 34662 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → ¬ 𝑄(le‘𝐾)(𝑅 𝑆))
7 simpl1 1063 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) ∧ (𝑄 𝑆) = (𝑅 𝑆)) → 𝐾 ∈ HL)
8 simpl21 1138 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) ∧ (𝑄 𝑆) = (𝑅 𝑆)) → 𝑄𝐴)
9 simpl23 1140 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) ∧ (𝑄 𝑆) = (𝑅 𝑆)) → 𝑆𝐴)
101, 2, 3hlatlej1 34487 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → 𝑄(le‘𝐾)(𝑄 𝑆))
117, 8, 9, 10syl3anc 1325 . . . . 5 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) ∧ (𝑄 𝑆) = (𝑅 𝑆)) → 𝑄(le‘𝐾)(𝑄 𝑆))
12 simpr 477 . . . . 5 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) ∧ (𝑄 𝑆) = (𝑅 𝑆)) → (𝑄 𝑆) = (𝑅 𝑆))
1311, 12breqtrd 4677 . . . 4 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) ∧ (𝑄 𝑆) = (𝑅 𝑆)) → 𝑄(le‘𝐾)(𝑅 𝑆))
1413ex 450 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → ((𝑄 𝑆) = (𝑅 𝑆) → 𝑄(le‘𝐾)(𝑅 𝑆)))
1514necon3bd 2807 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → (¬ 𝑄(le‘𝐾)(𝑅 𝑆) → (𝑄 𝑆) ≠ (𝑅 𝑆)))
166, 15mpd 15 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → (𝑄 𝑆) ≠ (𝑅 𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989   ≠ wne 2793   class class class wbr 4651  ‘cfv 5886  (class class class)co 6647  lecple 15942  joincjn 16938  Atomscatm 34376  HLchlt 34463  LPlanesclpl 34604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-preset 16922  df-poset 16940  df-plt 16952  df-lub 16968  df-glb 16969  df-join 16970  df-meet 16971  df-p0 17033  df-lat 17040  df-clat 17102  df-oposet 34289  df-ol 34291  df-oml 34292  df-covers 34379  df-ats 34380  df-atl 34411  df-cvlat 34435  df-hlat 34464  df-llines 34610  df-lplanes 34611 This theorem is referenced by:  cdleme16aN  35372
 Copyright terms: Public domain W3C validator