Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnle2at Structured version   Visualization version   GIF version

Theorem lplnnle2at 36671
Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lplnnle2at.l = (le‘𝐾)
lplnnle2at.j = (join‘𝐾)
lplnnle2at.a 𝐴 = (Atoms‘𝐾)
lplnnle2at.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnle2at ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))

Proof of Theorem lplnnle2at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1190 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → 𝑋𝑃)
2 eqid 2821 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2821 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2821 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
5 lplnnle2at.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
62, 3, 4, 5islpln 36660 . . . . 5 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76adantr 483 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 234 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 498 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7157 . . . . . . . . 9 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
1110breq2d 5070 . . . . . . . 8 (𝑄 = 𝑅 → (𝑋 (𝑄 𝑅) ↔ 𝑋 (𝑅 𝑅)))
1211notbid 320 . . . . . . 7 (𝑄 = 𝑅 → (¬ 𝑋 (𝑄 𝑅) ↔ ¬ 𝑋 (𝑅 𝑅)))
13 simpl1 1187 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
14 simpl3l 1224 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (LLines‘𝐾))
15 simpl22 1248 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝐴)
16 simpl23 1249 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑅𝐴)
17 simpr 487 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝑅)
18 lplnnle2at.j . . . . . . . . . . 11 = (join‘𝐾)
19 lplnnle2at.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
2018, 19, 4llni2 36642 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
2113, 15, 16, 17, 20syl31anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
22 eqid 2821 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
2322, 4llnnlt 36653 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ (𝑄 𝑅) ∈ (LLines‘𝐾)) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
2413, 14, 21, 23syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
252, 4llnbase 36639 . . . . . . . . . . 11 (𝑦 ∈ (LLines‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (Base‘𝐾))
27 simpl21 1247 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋𝑃)
282, 5lplnbase 36664 . . . . . . . . . . 11 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2927, 28syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋 ∈ (Base‘𝐾))
30 simpl3r 1225 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦( ⋖ ‘𝐾)𝑋)
312, 22, 3cvrlt 36400 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3213, 26, 29, 30, 31syl31anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦(lt‘𝐾)𝑋)
33 hlpos 36496 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3413, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ Poset)
352, 18, 19hlatjcl 36497 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3613, 15, 16, 35syl3anc 1367 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (Base‘𝐾))
37 lplnnle2at.l . . . . . . . . . . 11 = (le‘𝐾)
382, 37, 22pltletr 17575 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
3934, 26, 29, 36, 38syl13anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4032, 39mpand 693 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4124, 40mtod 200 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑋 (𝑄 𝑅))
42 simp1 1132 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
43 simp3l 1197 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LLines‘𝐾))
44 simp23 1204 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
4537, 19, 4llnnleat 36643 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → ¬ 𝑦 𝑅)
4642, 43, 44, 45syl3anc 1367 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 𝑅)
4743, 25syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
48 simp21 1202 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑃)
4948, 28syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
50 simp3r 1198 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
5142, 47, 49, 50, 31syl31anc 1369 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
52333ad2ant1 1129 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
532, 19atbase 36419 . . . . . . . . . . . . 13 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5444, 53syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
552, 37, 22pltletr 17575 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5652, 47, 49, 54, 55syl13anc 1368 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5751, 56mpand 693 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦(lt‘𝐾)𝑅))
5837, 22pltle 17565 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
5942, 43, 44, 58syl3anc 1367 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
6057, 59syld 47 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦 𝑅))
6146, 60mtod 200 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 𝑅)
6218, 19hlatjidm 36499 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
6342, 44, 62syl2anc 586 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 𝑅) = 𝑅)
6463breq2d 5070 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑅 𝑅) ↔ 𝑋 𝑅))
6561, 64mtbird 327 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑅 𝑅))
6612, 41, 65pm2.61ne 3102 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
67663exp 1115 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → ((𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 (𝑄 𝑅))))
6867exp4a 434 . . . 4 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))))
6968imp 409 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅))))
7069rexlimdv 3283 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))
719, 70mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  lecple 16566  Posetcpo 17544  ltcplt 17545  joincjn 17548  ccvr 36392  Atomscatm 36393  HLchlt 36480  LLinesclln 36621  LPlanesclpl 36622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629
This theorem is referenced by:  lplnnleat  36672  lplnnlelln  36673  2atnelpln  36674  lvolnle3at  36712
  Copyright terms: Public domain W3C validator