MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binom Structured version   Visualization version   GIF version

Theorem lply1binom 20402
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
cply1binom.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
lply1binom ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem lply1binom
StepHypRef Expression
1 crngring 19237 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cply1binom.p . . . . . . 7 𝑃 = (Poly1𝑅)
32ply1ring 20344 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
4 ringcmn 19260 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
51, 3, 43syl 18 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CMnd)
653ad2ant1 1125 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑃 ∈ CMnd)
7 cply1binom.x . . . . . . 7 𝑋 = (var1𝑅)
8 cply1binom.b . . . . . . 7 𝐵 = (Base‘𝑃)
97, 2, 8vr1cl 20313 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
101, 9syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑋𝐵)
11103ad2ant1 1125 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑋𝐵)
12 simp3 1130 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝐴𝐵)
13 cply1binom.a . . . . 5 + = (+g𝑃)
148, 13cmncom 18852 . . . 4 ((𝑃 ∈ CMnd ∧ 𝑋𝐵𝐴𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋))
156, 11, 12, 14syl3anc 1363 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋))
1615oveq2d 7161 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑁 (𝐴 + 𝑋)))
172ply1crng 20294 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
18173ad2ant1 1125 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑃 ∈ CRing)
19 simp2 1129 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑁 ∈ ℕ0)
208eleq2i 2901 . . . . 5 (𝐴𝐵𝐴 ∈ (Base‘𝑃))
2120biimpi 217 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑃))
22213ad2ant3 1127 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝐴 ∈ (Base‘𝑃))
2310, 8eleqtrdi 2920 . . . 4 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
24233ad2ant1 1125 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑋 ∈ (Base‘𝑃))
25 eqid 2818 . . . 4 (Base‘𝑃) = (Base‘𝑃)
26 cply1binom.m . . . 4 × = (.r𝑃)
27 cply1binom.t . . . 4 · = (.g𝑃)
28 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
29 cply1binom.e . . . 4 = (.g𝐺)
3025, 26, 27, 13, 28, 29crngbinom 19300 . . 3 (((𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃))) → (𝑁 (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
3118, 19, 22, 24, 30syl22anc 834 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
3216, 31eqtrd 2853 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  cmpt 5137  cfv 6348  (class class class)co 7145  0cc0 10525  cmin 10858  0cn0 11885  ...cfz 12880  Ccbc 13650  Basecbs 16471  +gcplusg 16553  .rcmulr 16554   Σg cgsu 16702  .gcmg 18162  CMndccmn 18835  mulGrpcmgp 19168  Ringcrg 19226  CRingccrg 19227  var1cv1 20272  Poly1cpl1 20273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-fac 13622  df-bc 13651  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-tset 16572  df-ple 16573  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-srg 19185  df-ring 19228  df-cring 19229  df-subrg 19462  df-psr 20064  df-mvr 20065  df-mpl 20066  df-opsr 20068  df-psr1 20276  df-vr1 20277  df-ply1 20278
This theorem is referenced by:  lply1binomsc  20403
  Copyright terms: Public domain W3C validator