MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binomsc Structured version   Visualization version   GIF version

Theorem lply1binomsc 19596
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
lply1binomsc.k 𝐾 = (Base‘𝑅)
lply1binomsc.s 𝑆 = (algSc‘𝑃)
lply1binomsc.h 𝐻 = (mulGrp‘𝑅)
lply1binomsc.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
lply1binomsc ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)

Proof of Theorem lply1binomsc
StepHypRef Expression
1 lply1binomsc.s . . . . . 6 𝑆 = (algSc‘𝑃)
2 eqid 2621 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
3 crngring 18479 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 cply1binom.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
54ply1ring 19537 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
63, 5syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
763ad2ant1 1080 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ Ring)
84ply1lmod 19541 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
1093ad2ant1 1080 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ LMod)
11 eqid 2621 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
12 eqid 2621 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
131, 2, 7, 10, 11, 12asclf 19256 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
14 lply1binomsc.k . . . . . . 7 𝐾 = (Base‘𝑅)
154ply1sca 19542 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
16153ad2ant1 1080 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑅 = (Scalar‘𝑃))
1716fveq2d 6152 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1814, 17syl5eq 2667 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐾 = (Base‘(Scalar‘𝑃)))
1918feq2d 5988 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆:𝐾⟶(Base‘𝑃) ↔ 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)))
2013, 19mpbird 247 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:𝐾⟶(Base‘𝑃))
21 simp3 1061 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
2220, 21ffvelrnd 6316 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆𝐴) ∈ (Base‘𝑃))
23 cply1binom.x . . . 4 𝑋 = (var1𝑅)
24 cply1binom.a . . . 4 + = (+g𝑃)
25 cply1binom.m . . . 4 × = (.r𝑃)
26 cply1binom.t . . . 4 · = (.g𝑃)
27 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
28 cply1binom.e . . . 4 = (.g𝐺)
294, 23, 24, 25, 26, 27, 28, 12lply1binom 19595 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ (𝑆𝐴) ∈ (Base‘𝑃)) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
3022, 29syld3an3 1368 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
314ply1assa 19488 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
32313ad2ant1 1080 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ AssAlg)
3332adantr 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ AssAlg)
34 fznn0sub 12315 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
3534adantl 482 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
3615fveq2d 6152 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3714, 36syl5eq 2667 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐾 = (Base‘(Scalar‘𝑃)))
3837eleq2d 2684 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐴𝐾𝐴 ∈ (Base‘(Scalar‘𝑃))))
3938biimpa 501 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
40393adant2 1078 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
4140adantr 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
42 eqid 2621 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
4312, 42ringidcl 18489 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
446, 43syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → (1r𝑃) ∈ (Base‘𝑃))
45443ad2ant1 1080 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (1r𝑃) ∈ (Base‘𝑃))
4645adantr 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (1r𝑃) ∈ (Base‘𝑃))
47 eqid 2621 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2621 . . . . . . . . . 10 (mulGrp‘(Scalar‘𝑃)) = (mulGrp‘(Scalar‘𝑃))
49 eqid 2621 . . . . . . . . . 10 (.g‘(mulGrp‘(Scalar‘𝑃))) = (.g‘(mulGrp‘(Scalar‘𝑃)))
5012, 2, 11, 47, 48, 49, 27, 28assamulgscm 19269 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ ((𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑃)) ∧ (1r𝑃) ∈ (Base‘𝑃))) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
5133, 35, 41, 46, 50syl13anc 1325 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
52 lply1binomsc.e . . . . . . . . . . . . . 14 𝐸 = (.g𝐻)
53 lply1binomsc.h . . . . . . . . . . . . . . . 16 𝐻 = (mulGrp‘𝑅)
5415fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (mulGrp‘𝑅) = (mulGrp‘(Scalar‘𝑃)))
5553, 54syl5eq 2667 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝐻 = (mulGrp‘(Scalar‘𝑃)))
5655fveq2d 6152 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (.g𝐻) = (.g‘(mulGrp‘(Scalar‘𝑃))))
5752, 56syl5eq 2667 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
58573ad2ant1 1080 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
5958adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
6059eqcomd 2627 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (.g‘(mulGrp‘(Scalar‘𝑃))) = 𝐸)
6160oveqd 6621 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴) = ((𝑁𝑘)𝐸𝐴))
6227ringmgp 18474 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
636, 62syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
64633ad2ant1 1080 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐺 ∈ Mnd)
6527, 12mgpbas 18416 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝐺)
6627, 42ringidval 18424 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
6765, 28, 66mulgnn0z 17488 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6864, 34, 67syl2an 494 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6961, 68oveq12d 6622 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
7051, 69eqtrd 2655 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
711, 2, 11, 47, 42asclval 19254 . . . . . . . . 9 (𝐴 ∈ (Base‘(Scalar‘𝑃)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7241, 71syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7372oveq2d 6620 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))))
7453ringmgp 18474 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
753, 74syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝐻 ∈ Mnd)
76753ad2ant1 1080 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐻 ∈ Mnd)
7776adantr 481 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐻 ∈ Mnd)
78 simpr 477 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴𝐾)
7953, 14mgpbas 18416 . . . . . . . . . . . . 13 𝐾 = (Base‘𝐻)
8078, 79syl6eleq 2708 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
81803adant2 1078 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
8281adantr 481 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘𝐻))
83 eqid 2621 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
8483, 52mulgnn0cl 17479 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘𝐻)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8577, 35, 82, 84syl3anc 1323 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8616adantr 481 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 = (Scalar‘𝑃))
8786eqcomd 2627 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Scalar‘𝑃) = 𝑅)
8887fveq2d 6152 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
89 eqid 2621 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
9053, 89mgpbas 18416 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝐻)
9188, 90syl6eq 2671 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9285, 91eleqtrrd 2701 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)))
931, 2, 11, 47, 42asclval 19254 . . . . . . . 8 (((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9492, 93syl 17 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9570, 73, 943eqtr4d 2665 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = (𝑆‘((𝑁𝑘)𝐸𝐴)))
9695oveq1d 6619 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)) = ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))
9796oveq2d 6620 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))) = ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))
9897mpteq2dva 4704 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))))
9998oveq2d 6620 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
10030, 99eqtrd 2655 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  cmin 10210  0cn0 11236  ...cfz 12268  Ccbc 13029  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866   Σg cgsu 16022  Mndcmnd 17215  .gcmg 17461  mulGrpcmgp 18410  1rcur 18422  Ringcrg 18468  CRingccrg 18469  LModclmod 18784  AssAlgcasa 19228  algSccascl 19230  var1cv1 19465  Poly1cpl1 19466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-fac 13001  df-bc 13030  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-tset 15881  df-ple 15882  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-srg 18427  df-ring 18470  df-cring 18471  df-subrg 18699  df-lmod 18786  df-lss 18852  df-assa 19231  df-ascl 19233  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-vr1 19470  df-ply1 19471
This theorem is referenced by:  chpscmatgsumbin  20568
  Copyright terms: Public domain W3C validator