Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolsetN Structured version   Visualization version   GIF version

Theorem lpolsetN 36290
Description: The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v 𝑉 = (Base‘𝑊)
lpolset.s 𝑆 = (LSubSp‘𝑊)
lpolset.z 0 = (0g𝑊)
lpolset.a 𝐴 = (LSAtoms‘𝑊)
lpolset.h 𝐻 = (LSHyp‘𝑊)
lpolset.p 𝑃 = (LPol‘𝑊)
Assertion
Ref Expression
lpolsetN (𝑊𝑋𝑃 = {𝑜 ∈ (𝑆𝑚 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Distinct variable groups:   𝑥,𝐴   𝑆,𝑜   𝑜,𝑉   𝑥,𝑜,𝑦,𝑊
Allowed substitution hints:   𝐴(𝑦,𝑜)   𝑃(𝑥,𝑦,𝑜)   𝑆(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑜)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑜)   0 (𝑥,𝑦,𝑜)

Proof of Theorem lpolsetN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3202 . 2 (𝑊𝑋𝑊 ∈ V)
2 lpolset.p . . 3 𝑃 = (LPol‘𝑊)
3 fveq2 6158 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
4 lpolset.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
53, 4syl6eqr 2673 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
6 fveq2 6158 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
7 lpolset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
86, 7syl6eqr 2673 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
98pweqd 4141 . . . . . 6 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
105, 9oveq12d 6633 . . . . 5 (𝑤 = 𝑊 → ((LSubSp‘𝑤) ↑𝑚 𝒫 (Base‘𝑤)) = (𝑆𝑚 𝒫 𝑉))
118fveq2d 6162 . . . . . . 7 (𝑤 = 𝑊 → (𝑜‘(Base‘𝑤)) = (𝑜𝑉))
12 fveq2 6158 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
13 lpolset.z . . . . . . . . 9 0 = (0g𝑊)
1412, 13syl6eqr 2673 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1514sneqd 4167 . . . . . . 7 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1611, 15eqeq12d 2636 . . . . . 6 (𝑤 = 𝑊 → ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ↔ (𝑜𝑉) = { 0 }))
178sseq2d 3618 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑥 ⊆ (Base‘𝑤) ↔ 𝑥𝑉))
188sseq2d 3618 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑦 ⊆ (Base‘𝑤) ↔ 𝑦𝑉))
1917, 183anbi12d 1397 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) ↔ (𝑥𝑉𝑦𝑉𝑥𝑦)))
2019imbi1d 331 . . . . . . 7 (𝑤 = 𝑊 → (((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ↔ ((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))))
21202albidv 1848 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ↔ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))))
22 fveq2 6158 . . . . . . . 8 (𝑤 = 𝑊 → (LSAtoms‘𝑤) = (LSAtoms‘𝑊))
23 lpolset.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑊)
2422, 23syl6eqr 2673 . . . . . . 7 (𝑤 = 𝑊 → (LSAtoms‘𝑤) = 𝐴)
25 fveq2 6158 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSHyp‘𝑤) = (LSHyp‘𝑊))
26 lpolset.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
2725, 26syl6eqr 2673 . . . . . . . . 9 (𝑤 = 𝑊 → (LSHyp‘𝑤) = 𝐻)
2827eleq2d 2684 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑜𝑥) ∈ (LSHyp‘𝑤) ↔ (𝑜𝑥) ∈ 𝐻))
2928anbi1d 740 . . . . . . 7 (𝑤 = 𝑊 → (((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥) ↔ ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥)))
3024, 29raleqbidv 3145 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥) ↔ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥)))
3116, 21, 303anbi123d 1396 . . . . 5 (𝑤 = 𝑊 → (((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)) ↔ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))))
3210, 31rabeqbidv 3185 . . . 4 (𝑤 = 𝑊 → {𝑜 ∈ ((LSubSp‘𝑤) ↑𝑚 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))} = {𝑜 ∈ (𝑆𝑚 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
33 df-lpolN 36289 . . . 4 LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑𝑚 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
34 ovex 6643 . . . . 5 (𝑆𝑚 𝒫 𝑉) ∈ V
3534rabex 4783 . . . 4 {𝑜 ∈ (𝑆𝑚 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))} ∈ V
3632, 33, 35fvmpt 6249 . . 3 (𝑊 ∈ V → (LPol‘𝑊) = {𝑜 ∈ (𝑆𝑚 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
372, 36syl5eq 2667 . 2 (𝑊 ∈ V → 𝑃 = {𝑜 ∈ (𝑆𝑚 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
381, 37syl 17 1 (𝑊𝑋𝑃 = {𝑜 ∈ (𝑆𝑚 𝒫 𝑉) ∣ ((𝑜𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥𝐴 ((𝑜𝑥) ∈ 𝐻 ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  wral 2908  {crab 2912  Vcvv 3190  wss 3560  𝒫 cpw 4136  {csn 4155  cfv 5857  (class class class)co 6615  𝑚 cmap 7817  Basecbs 15800  0gc0g 16040  LSubSpclss 18872  LSAtomsclsa 33780  LSHypclsh 33781  LPolclpoN 36288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-ov 6618  df-lpolN 36289
This theorem is referenced by:  islpolN  36291
  Copyright terms: Public domain W3C validator