Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2 Structured version   Visualization version   GIF version

Theorem lptioo2 41918
Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2.1 𝐽 = (topGen‘ran (,))
lptioo2.2 (𝜑𝐴 ∈ ℝ*)
lptioo2.3 (𝜑𝐵 ∈ ℝ)
lptioo2.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4112 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) ⊆ (𝐴(,)𝐵))
2 simpr 487 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 ubioo 12773 . . . . . . . . . . . 12 ¬ 𝐵 ∈ (𝐴(,)𝐵)
4 eleq1 2903 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
54biimpcd 251 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐵𝐵 ∈ (𝐴(,)𝐵)))
63, 5mtoi 201 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
76adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
8 velsn 4586 . . . . . . . . . 10 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
97, 8sylnibr 331 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
102, 9eldifd 3950 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵}))
111, 10eqelssd 3991 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) = (𝐴(,)𝐵))
1211ineq2d 4192 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo2.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1716ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐴 ∈ ℝ*)
18 elioo3g 12770 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
1918biimpi 218 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
2019simpld 497 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*))
2120simp3d 1140 . . . . . . . 8 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ*)
2221adantl 484 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 ∈ ℝ*)
23 iooin 12775 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2414, 15, 17, 22, 23syl22anc 836 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
25 iftrue 4476 . . . . . . . . . . 11 (𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
2625adantl 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
27 lptioo2.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2827ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 < 𝐵)
2926, 28eqbrtrd 5091 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
30 iffalse 4479 . . . . . . . . . . 11 𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3130adantl 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3219simprd 498 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐵𝐵 < 𝑏))
3332simpld 497 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐵)
3433ad2antlr 725 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 < 𝐵)
3531, 34eqbrtrd 5091 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3629, 35pm2.61dan 811 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3732simprd 498 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 < 𝑏)
3820simp2d 1139 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑎(,)𝑏) → 𝑏 ∈ ℝ*)
39 xrltnle 10711 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4021, 38, 39syl2anc 586 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4137, 40mpbid 234 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → ¬ 𝑏𝐵)
42 iffalse 4479 . . . . . . . . . . 11 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4341, 42syl 17 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4443eqcomd 2830 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4544adantl 484 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4636, 45breqtrd 5095 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717, 14ifcld 4515 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
4845, 22eqeltrrd 2917 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
49 ioon0 12767 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5047, 48, 49syl2anc 586 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5146, 50mpbird 259 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5224, 51eqnetrd 3086 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5313, 52eqnetrd 3086 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)
5453ex 415 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
5554ralrimivva 3194 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
56 lptioo2.1 . . 3 𝐽 = (topGen‘ran (,))
57 ioossre 12801 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
5857a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
59 lptioo2.3 . . 3 (𝜑𝐵 ∈ ℝ)
6056, 58, 59islptre 41906 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)))
6155, 60mpbird 259 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  cdif 3936  cin 3938  wss 3939  c0 4294  ifcif 4470  {csn 4570   class class class wbr 5069  ran crn 5559  cfv 6358  (class class class)co 7159  cr 10539  *cxr 10677   < clt 10678  cle 10679  (,)cioo 12741  topGenctg 16714  limPtclp 21745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747
This theorem is referenced by:  lptioo2cn  41932  fouriersw  42523
  Copyright terms: Public domain W3C validator