Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0eq Structured version   Visualization version   GIF version

Theorem lsatcv0eq 33814
 Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 29087 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0eq.o 0 = (0g𝑊)
lsatcv0eq.p = (LSSum‘𝑊)
lsatcv0eq.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0eq.c 𝐶 = ( ⋖L𝑊)
lsatcv0eq.w (𝜑𝑊 ∈ LVec)
lsatcv0eq.q (𝜑𝑄𝐴)
lsatcv0eq.r (𝜑𝑅𝐴)
Assertion
Ref Expression
lsatcv0eq (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))

Proof of Theorem lsatcv0eq
StepHypRef Expression
1 lsatcv0eq.o . . . . . 6 0 = (0g𝑊)
2 lsatcv0eq.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
3 lsatcv0eq.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lsatcv0eq.q . . . . . 6 (𝜑𝑄𝐴)
5 lsatcv0eq.r . . . . . 6 (𝜑𝑅𝐴)
61, 2, 3, 4, 5lsatnem0 33812 . . . . 5 (𝜑 → (𝑄𝑅 ↔ (𝑄𝑅) = { 0 }))
7 eqid 2621 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lsatcv0eq.p . . . . . 6 = (LSSum‘𝑊)
9 lsatcv0eq.c . . . . . 6 𝐶 = ( ⋖L𝑊)
10 lveclmod 19025 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
113, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
127, 2, 11, 4lsatlssel 33764 . . . . . 6 (𝜑𝑄 ∈ (LSubSp‘𝑊))
137, 8, 1, 2, 9, 3, 12, 5lcvp 33807 . . . . 5 (𝜑 → ((𝑄𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 𝑅)))
141, 2, 9, 3, 4lsatcv0 33798 . . . . . 6 (𝜑 → { 0 }𝐶𝑄)
1514biantrurd 529 . . . . 5 (𝜑 → (𝑄𝐶(𝑄 𝑅) ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
166, 13, 153bitrd 294 . . . 4 (𝜑 → (𝑄𝑅 ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
173adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑊 ∈ LVec)
181, 7lsssn0 18867 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
1911, 18syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
2019adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 } ∈ (LSubSp‘𝑊))
2112adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊))
227, 2, 11, 5lsatlssel 33764 . . . . . . . 8 (𝜑𝑅 ∈ (LSubSp‘𝑊))
237, 8lsmcl 19002 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2411, 12, 22, 23syl3anc 1323 . . . . . . 7 (𝜑 → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2524adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
26 simprl 793 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 }𝐶𝑄)
27 simprr 795 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄𝐶(𝑄 𝑅))
287, 9, 17, 20, 21, 25, 26, 27lcvntr 33793 . . . . 5 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → ¬ { 0 }𝐶(𝑄 𝑅))
2928ex 450 . . . 4 (𝜑 → (({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅)) → ¬ { 0 }𝐶(𝑄 𝑅)))
3016, 29sylbid 230 . . 3 (𝜑 → (𝑄𝑅 → ¬ { 0 }𝐶(𝑄 𝑅)))
3130necon4ad 2809 . 2 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) → 𝑄 = 𝑅))
327lsssssubg 18877 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3311, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3433, 12sseldd 3584 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
358lsmidm 17998 . . . . 5 (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 𝑄) = 𝑄)
3634, 35syl 17 . . . 4 (𝜑 → (𝑄 𝑄) = 𝑄)
3714, 36breqtrrd 4641 . . 3 (𝜑 → { 0 }𝐶(𝑄 𝑄))
38 oveq2 6612 . . . 4 (𝑄 = 𝑅 → (𝑄 𝑄) = (𝑄 𝑅))
3938breq2d 4625 . . 3 (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 𝑄) ↔ { 0 }𝐶(𝑄 𝑅)))
4037, 39syl5ibcom 235 . 2 (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 𝑅)))
4131, 40impbid 202 1 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∩ cin 3554   ⊆ wss 3555  {csn 4148   class class class wbr 4613  ‘cfv 5847  (class class class)co 6604  0gc0g 16021  SubGrpcsubg 17509  LSSumclsm 17970  LModclmod 18784  LSubSpclss 18851  LVecclvec 19021  LSAtomsclsa 33741   ⋖L clcv 33785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-oppg 17697  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022  df-lsatoms 33743  df-lcv 33786 This theorem is referenced by:  lsatcv1  33815
 Copyright terms: Public domain W3C validator