Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv1 Structured version   Visualization version   GIF version

Theorem lsatcv1 36188
Description: Two atoms covering the zero subspace are equal. (atcv1 30160 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcv1.o 0 = (0g𝑊)
lsatcv1.p = (LSSum‘𝑊)
lsatcv1.s 𝑆 = (LSubSp‘𝑊)
lsatcv1.a 𝐴 = (LSAtoms‘𝑊)
lsatcv1.c 𝐶 = ( ⋖L𝑊)
lsatcv1.w (𝜑𝑊 ∈ LVec)
lsatcv1.u (𝜑𝑈𝑆)
lsatcv1.q (𝜑𝑄𝐴)
lsatcv1.r (𝜑𝑅𝐴)
lsatcv1.l (𝜑𝑈𝐶(𝑄 𝑅))
Assertion
Ref Expression
lsatcv1 (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅))

Proof of Theorem lsatcv1
StepHypRef Expression
1 lsatcv1.l . . . 4 (𝜑𝑈𝐶(𝑄 𝑅))
2 breq1 5072 . . . 4 (𝑈 = { 0 } → (𝑈𝐶(𝑄 𝑅) ↔ { 0 }𝐶(𝑄 𝑅)))
31, 2syl5ibcom 247 . . 3 (𝜑 → (𝑈 = { 0 } → { 0 }𝐶(𝑄 𝑅)))
4 lsatcv1.o . . . 4 0 = (0g𝑊)
5 lsatcv1.p . . . 4 = (LSSum‘𝑊)
6 lsatcv1.a . . . 4 𝐴 = (LSAtoms‘𝑊)
7 lsatcv1.c . . . 4 𝐶 = ( ⋖L𝑊)
8 lsatcv1.w . . . 4 (𝜑𝑊 ∈ LVec)
9 lsatcv1.q . . . 4 (𝜑𝑄𝐴)
10 lsatcv1.r . . . 4 (𝜑𝑅𝐴)
114, 5, 6, 7, 8, 9, 10lsatcv0eq 36187 . . 3 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
123, 11sylibd 241 . 2 (𝜑 → (𝑈 = { 0 } → 𝑄 = 𝑅))
131adantr 483 . . . 4 ((𝜑𝑄 = 𝑅) → 𝑈𝐶(𝑄 𝑅))
14 lsatcv1.s . . . . 5 𝑆 = (LSubSp‘𝑊)
158adantr 483 . . . . 5 ((𝜑𝑄 = 𝑅) → 𝑊 ∈ LVec)
16 lsatcv1.u . . . . . 6 (𝜑𝑈𝑆)
1716adantr 483 . . . . 5 ((𝜑𝑄 = 𝑅) → 𝑈𝑆)
18 oveq1 7166 . . . . . . 7 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
19 lveclmod 19881 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
208, 19syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
2114, 6, 20, 10lsatlssel 36137 . . . . . . . . 9 (𝜑𝑅𝑆)
2214lsssubg 19732 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑅𝑆) → 𝑅 ∈ (SubGrp‘𝑊))
2320, 21, 22syl2anc 586 . . . . . . . 8 (𝜑𝑅 ∈ (SubGrp‘𝑊))
245lsmidm 18791 . . . . . . . 8 (𝑅 ∈ (SubGrp‘𝑊) → (𝑅 𝑅) = 𝑅)
2523, 24syl 17 . . . . . . 7 (𝜑 → (𝑅 𝑅) = 𝑅)
2618, 25sylan9eqr 2881 . . . . . 6 ((𝜑𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
2710adantr 483 . . . . . 6 ((𝜑𝑄 = 𝑅) → 𝑅𝐴)
2826, 27eqeltrd 2916 . . . . 5 ((𝜑𝑄 = 𝑅) → (𝑄 𝑅) ∈ 𝐴)
294, 14, 6, 7, 15, 17, 28lsatcveq0 36172 . . . 4 ((𝜑𝑄 = 𝑅) → (𝑈𝐶(𝑄 𝑅) ↔ 𝑈 = { 0 }))
3013, 29mpbid 234 . . 3 ((𝜑𝑄 = 𝑅) → 𝑈 = { 0 })
3130ex 415 . 2 (𝜑 → (𝑄 = 𝑅𝑈 = { 0 }))
3212, 31impbid 214 1 (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  {csn 4570   class class class wbr 5069  cfv 6358  (class class class)co 7159  0gc0g 16716  SubGrpcsubg 18276  LSSumclsm 18762  LModclmod 19637  LSubSpclss 19706  LVecclvec 19877  LSAtomsclsa 36114  L clcv 36158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lsatoms 36116  df-lcv 36159
This theorem is referenced by:  lsatcvat2  36191
  Copyright terms: Public domain W3C validator