![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat2 | Structured version Visualization version GIF version |
Description: A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 29374 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat2.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat2.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat2.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lsatcvat2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat2.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat2.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat2.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
lsatcvat2.l | ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat2 | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
2 | lsatcvat2.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lsatcvat2.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lsatcvat2.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | lsatcvat2.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lsatcvat2.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | lsatcvat2.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
8 | lsatcvat2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
9 | lsatcvat2.n | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
10 | lsatcvat2.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
11 | lsatcvat2.l | . . . . 5 ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) | |
12 | 1, 3, 2, 4, 10, 5, 6, 7, 8, 11 | lsatcv1 34653 | . . . 4 ⊢ (𝜑 → (𝑈 = {(0g‘𝑊)} ↔ 𝑄 = 𝑅)) |
13 | 12 | necon3bid 2867 | . . 3 ⊢ (𝜑 → (𝑈 ≠ {(0g‘𝑊)} ↔ 𝑄 ≠ 𝑅)) |
14 | 9, 13 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑈 ≠ {(0g‘𝑊)}) |
15 | lveclmod 19154 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
16 | 5, 15 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
17 | 2, 4, 16, 7 | lsatlssel 34602 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
18 | 2, 4, 16, 8 | lsatlssel 34602 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
19 | 2, 3 | lsmcl 19131 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
20 | 16, 17, 18, 19 | syl3anc 1366 | . . 3 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ 𝑆) |
21 | 2, 10, 5, 6, 20, 11 | lcvpss 34629 | . 2 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 21 | lsatcvat 34655 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 {csn 4210 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 0gc0g 16147 LSSumclsm 18095 LModclmod 18911 LSubSpclss 18980 LVecclvec 19150 LSAtomsclsa 34579 ⋖L clcv 34623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-oppg 17822 df-lsm 18097 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-lsatoms 34581 df-lcv 34624 |
This theorem is referenced by: lsatcvat3 34657 |
Copyright terms: Public domain | W3C validator |