Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat3 Structured version   Visualization version   GIF version

Theorem lsatcvat3 33858
 Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 29143 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat3.s 𝑆 = (LSubSp‘𝑊)
lsatcvat3.p = (LSSum‘𝑊)
lsatcvat3.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat3.w (𝜑𝑊 ∈ LVec)
lsatcvat3.u (𝜑𝑈𝑆)
lsatcvat3.q (𝜑𝑄𝐴)
lsatcvat3.r (𝜑𝑅𝐴)
lsatcvat3.n (𝜑𝑄𝑅)
lsatcvat3.m (𝜑 → ¬ 𝑅𝑈)
lsatcvat3.l (𝜑𝑄 ⊆ (𝑈 𝑅))
Assertion
Ref Expression
lsatcvat3 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)

Proof of Theorem lsatcvat3
StepHypRef Expression
1 lsatcvat3.s . 2 𝑆 = (LSubSp‘𝑊)
2 lsatcvat3.p . 2 = (LSSum‘𝑊)
3 lsatcvat3.a . 2 𝐴 = (LSAtoms‘𝑊)
4 eqid 2621 . 2 ( ⋖L𝑊) = ( ⋖L𝑊)
5 lsatcvat3.w . 2 (𝜑𝑊 ∈ LVec)
6 lveclmod 19046 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . 3 (𝜑𝑊 ∈ LMod)
8 lsatcvat3.u . . 3 (𝜑𝑈𝑆)
9 lsatcvat3.q . . . . 5 (𝜑𝑄𝐴)
101, 3, 7, 9lsatlssel 33803 . . . 4 (𝜑𝑄𝑆)
11 lsatcvat3.r . . . . 5 (𝜑𝑅𝐴)
121, 3, 7, 11lsatlssel 33803 . . . 4 (𝜑𝑅𝑆)
131, 2lsmcl 19023 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄𝑆𝑅𝑆) → (𝑄 𝑅) ∈ 𝑆)
147, 10, 12, 13syl3anc 1323 . . 3 (𝜑 → (𝑄 𝑅) ∈ 𝑆)
151lssincl 18905 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑄 𝑅) ∈ 𝑆) → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝑆)
167, 8, 14, 15syl3anc 1323 . 2 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝑆)
17 lsatcvat3.n . 2 (𝜑𝑄𝑅)
18 lsatcvat3.m . . . . 5 (𝜑 → ¬ 𝑅𝑈)
191, 2, 3, 4, 5, 8, 11lcv1 33847 . . . . 5 (𝜑 → (¬ 𝑅𝑈𝑈( ⋖L𝑊)(𝑈 𝑅)))
2018, 19mpbid 222 . . . 4 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
21 lmodabl 18850 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
227, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ Abel)
231lsssssubg 18898 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
247, 23syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
2524, 10sseldd 3589 . . . . . . . . . 10 (𝜑𝑄 ∈ (SubGrp‘𝑊))
2624, 12sseldd 3589 . . . . . . . . . 10 (𝜑𝑅 ∈ (SubGrp‘𝑊))
272lsmcom 18201 . . . . . . . . . 10 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
2822, 25, 26, 27syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
2928oveq2d 6631 . . . . . . . 8 (𝜑 → (𝑈 (𝑄 𝑅)) = (𝑈 (𝑅 𝑄)))
3024, 8sseldd 3589 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
312lsmass 18023 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊)) → ((𝑈 𝑅) 𝑄) = (𝑈 (𝑅 𝑄)))
3230, 26, 25, 31syl3anc 1323 . . . . . . . 8 (𝜑 → ((𝑈 𝑅) 𝑄) = (𝑈 (𝑅 𝑄)))
3329, 32eqtr4d 2658 . . . . . . 7 (𝜑 → (𝑈 (𝑄 𝑅)) = ((𝑈 𝑅) 𝑄))
341, 2lsmcl 19023 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
357, 8, 12, 34syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
3624, 35sseldd 3589 . . . . . . . 8 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
37 lsatcvat3.l . . . . . . . 8 (𝜑𝑄 ⊆ (𝑈 𝑅))
382lsmless2 18015 . . . . . . . 8 (((𝑈 𝑅) ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑄 ⊆ (𝑈 𝑅)) → ((𝑈 𝑅) 𝑄) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
3936, 36, 37, 38syl3anc 1323 . . . . . . 7 (𝜑 → ((𝑈 𝑅) 𝑄) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
4033, 39eqsstrd 3624 . . . . . 6 (𝜑 → (𝑈 (𝑄 𝑅)) ⊆ ((𝑈 𝑅) (𝑈 𝑅)))
412lsmidm 18017 . . . . . . 7 ((𝑈 𝑅) ∈ (SubGrp‘𝑊) → ((𝑈 𝑅) (𝑈 𝑅)) = (𝑈 𝑅))
4236, 41syl 17 . . . . . 6 (𝜑 → ((𝑈 𝑅) (𝑈 𝑅)) = (𝑈 𝑅))
4340, 42sseqtrd 3626 . . . . 5 (𝜑 → (𝑈 (𝑄 𝑅)) ⊆ (𝑈 𝑅))
4424, 14sseldd 3589 . . . . . 6 (𝜑 → (𝑄 𝑅) ∈ (SubGrp‘𝑊))
452lsmub2 18012 . . . . . . 7 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑄 𝑅))
4625, 26, 45syl2anc 692 . . . . . 6 (𝜑𝑅 ⊆ (𝑄 𝑅))
472lsmless2 18015 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑄 𝑅) ∈ (SubGrp‘𝑊) ∧ 𝑅 ⊆ (𝑄 𝑅)) → (𝑈 𝑅) ⊆ (𝑈 (𝑄 𝑅)))
4830, 44, 46, 47syl3anc 1323 . . . . 5 (𝜑 → (𝑈 𝑅) ⊆ (𝑈 (𝑄 𝑅)))
4943, 48eqssd 3605 . . . 4 (𝜑 → (𝑈 (𝑄 𝑅)) = (𝑈 𝑅))
5020, 49breqtrrd 4651 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 (𝑄 𝑅)))
511, 2, 4, 7, 8, 14, 50lcvexchlem4 33843 . 2 (𝜑 → (𝑈 ∩ (𝑄 𝑅))( ⋖L𝑊)(𝑄 𝑅))
521, 2, 3, 4, 5, 16, 9, 11, 17, 51lsatcvat2 33857 1 (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∩ cin 3559   ⊆ wss 3560   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615  SubGrpcsubg 17528  LSSumclsm 17989  Abelcabl 18134  LModclmod 18803  LSubSpclss 18872  LVecclvec 19042  LSAtomsclsa 33780   ⋖L clcv 33824 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-0g 16042  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-cntz 17690  df-oppg 17716  df-lsm 17991  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-drng 18689  df-lmod 18805  df-lss 18873  df-lsp 18912  df-lvec 19043  df-lsatoms 33782  df-lcv 33825 This theorem is referenced by:  l1cvat  33861
 Copyright terms: Public domain W3C validator