Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcveq0 Structured version   Visualization version   GIF version

Theorem lsatcveq0 36048
Description: A subspace covered by an atom must be the zero subspace. (atcveq0 30052 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcveq0.o 0 = (0g𝑊)
lsatcveq0.s 𝑆 = (LSubSp‘𝑊)
lsatcveq0.a 𝐴 = (LSAtoms‘𝑊)
lsatcveq0.c 𝐶 = ( ⋖L𝑊)
lsatcveq0.w (𝜑𝑊 ∈ LVec)
lsatcveq0.u (𝜑𝑈𝑆)
lsatcveq0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcveq0 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))

Proof of Theorem lsatcveq0
StepHypRef Expression
1 lsatcveq0.s . . . . 5 𝑆 = (LSubSp‘𝑊)
2 lsatcveq0.c . . . . 5 𝐶 = ( ⋖L𝑊)
3 lsatcveq0.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 481 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑊 ∈ LVec)
5 lsatcveq0.u . . . . . 6 (𝜑𝑈𝑆)
65adantr 481 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝑆)
7 lsatcveq0.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
8 lveclmod 19807 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
10 lsatcveq0.q . . . . . . 7 (𝜑𝑄𝐴)
111, 7, 9, 10lsatlssel 36013 . . . . . 6 (𝜑𝑄𝑆)
1211adantr 481 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑄𝑆)
13 simpr 485 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝐶𝑄)
141, 2, 4, 6, 12, 13lcvpss 36040 . . . 4 ((𝜑𝑈𝐶𝑄) → 𝑈𝑄)
1514ex 413 . . 3 (𝜑 → (𝑈𝐶𝑄𝑈𝑄))
16 lsatcveq0.o . . . . 5 0 = (0g𝑊)
1716, 7, 2, 3, 10lsatcv0 36047 . . . 4 (𝜑 → { 0 }𝐶𝑄)
1833ad2ant1 1125 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑊 ∈ LVec)
1916, 1lsssn0 19648 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
209, 19syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ 𝑆)
21203ad2ant1 1125 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ∈ 𝑆)
22113ad2ant1 1125 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑄𝑆)
2353ad2ant1 1125 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑆)
24 simp2 1129 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 }𝐶𝑄)
2516, 1lss0ss 19649 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
269, 5, 25syl2anc 584 . . . . . . 7 (𝜑 → { 0 } ⊆ 𝑈)
27263ad2ant1 1125 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ⊆ 𝑈)
28 simp3 1130 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑄)
291, 2, 18, 21, 22, 23, 24, 27, 28lcvnbtwn3 36044 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈 = { 0 })
30293exp 1111 . . . 4 (𝜑 → ({ 0 }𝐶𝑄 → (𝑈𝑄𝑈 = { 0 })))
3117, 30mpd 15 . . 3 (𝜑 → (𝑈𝑄𝑈 = { 0 }))
3215, 31syld 47 . 2 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
33 breq1 5060 . . 3 (𝑈 = { 0 } → (𝑈𝐶𝑄 ↔ { 0 }𝐶𝑄))
3417, 33syl5ibrcom 248 . 2 (𝜑 → (𝑈 = { 0 } → 𝑈𝐶𝑄))
3532, 34impbid 213 1 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wss 3933  wpss 3934  {csn 4557   class class class wbr 5057  cfv 6348  0gc0g 16701  LModclmod 19563  LSubSpclss 19632  LVecclvec 19803  LSAtomsclsa 35990  L clcv 36034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lvec 19804  df-lsatoms 35992  df-lcv 36035
This theorem is referenced by:  lcvp  36056  lsatcv1  36064
  Copyright terms: Public domain W3C validator