Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch Structured version   Visualization version   GIF version

Theorem lsatexch 34156
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 29224 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatexch.s 𝑆 = (LSubSp‘𝑊)
lsatexch.p = (LSSum‘𝑊)
lsatexch.o 0 = (0g𝑊)
lsatexch.a 𝐴 = (LSAtoms‘𝑊)
lsatexch.w (𝜑𝑊 ∈ LVec)
lsatexch.u (𝜑𝑈𝑆)
lsatexch.q (𝜑𝑄𝐴)
lsatexch.r (𝜑𝑅𝐴)
lsatexch.l (𝜑𝑄 ⊆ (𝑈 𝑅))
lsatexch.z (𝜑 → (𝑈𝑄) = { 0 })
Assertion
Ref Expression
lsatexch (𝜑𝑅 ⊆ (𝑈 𝑄))

Proof of Theorem lsatexch
StepHypRef Expression
1 lsatexch.w . . . . . 6 (𝜑𝑊 ∈ LVec)
2 lveclmod 19100 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsatexch.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
54lsssssubg 18952 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
63, 5syl 17 . . . 4 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
7 lsatexch.u . . . 4 (𝜑𝑈𝑆)
86, 7sseldd 3602 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lsatexch.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
10 lsatexch.r . . . . 5 (𝜑𝑅𝐴)
114, 9, 3, 10lsatlssel 34110 . . . 4 (𝜑𝑅𝑆)
126, 11sseldd 3602 . . 3 (𝜑𝑅 ∈ (SubGrp‘𝑊))
13 lsatexch.p . . . 4 = (LSSum‘𝑊)
1413lsmub2 18066 . . 3 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 𝑅))
158, 12, 14syl2anc 693 . 2 (𝜑𝑅 ⊆ (𝑈 𝑅))
16 eqid 2621 . . 3 ( ⋖L𝑊) = ( ⋖L𝑊)
174, 13lsmcl 19077 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑅𝑆) → (𝑈 𝑅) ∈ 𝑆)
183, 7, 11, 17syl3anc 1325 . . 3 (𝜑 → (𝑈 𝑅) ∈ 𝑆)
19 lsatexch.q . . . . 5 (𝜑𝑄𝐴)
204, 9, 3, 19lsatlssel 34110 . . . 4 (𝜑𝑄𝑆)
214, 13lsmcl 19077 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆) → (𝑈 𝑄) ∈ 𝑆)
223, 7, 20, 21syl3anc 1325 . . 3 (𝜑 → (𝑈 𝑄) ∈ 𝑆)
23 lsatexch.z . . . . . . 7 (𝜑 → (𝑈𝑄) = { 0 })
24 lsatexch.o . . . . . . . 8 0 = (0g𝑊)
254, 13, 24, 9, 16, 1, 7, 19lcvp 34153 . . . . . . 7 (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈( ⋖L𝑊)(𝑈 𝑄)))
2623, 25mpbid 222 . . . . . 6 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑄))
274, 16, 1, 7, 22, 26lcvpss 34137 . . . . 5 (𝜑𝑈 ⊊ (𝑈 𝑄))
2813lsmub1 18065 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 𝑅))
298, 12, 28syl2anc 693 . . . . . 6 (𝜑𝑈 ⊆ (𝑈 𝑅))
30 lsatexch.l . . . . . 6 (𝜑𝑄 ⊆ (𝑈 𝑅))
316, 20sseldd 3602 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
326, 18sseldd 3602 . . . . . . 7 (𝜑 → (𝑈 𝑅) ∈ (SubGrp‘𝑊))
3313lsmlub 18072 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
348, 31, 32, 33syl3anc 1325 . . . . . 6 (𝜑 → ((𝑈 ⊆ (𝑈 𝑅) ∧ 𝑄 ⊆ (𝑈 𝑅)) ↔ (𝑈 𝑄) ⊆ (𝑈 𝑅)))
3529, 30, 34mpbi2and 956 . . . . 5 (𝜑 → (𝑈 𝑄) ⊆ (𝑈 𝑅))
3627, 35psssstrd 3714 . . . 4 (𝜑𝑈 ⊊ (𝑈 𝑅))
374, 13, 9, 16, 1, 7, 10lcv2 34155 . . . 4 (𝜑 → (𝑈 ⊊ (𝑈 𝑅) ↔ 𝑈( ⋖L𝑊)(𝑈 𝑅)))
3836, 37mpbid 222 . . 3 (𝜑𝑈( ⋖L𝑊)(𝑈 𝑅))
394, 16, 1, 7, 18, 22, 38, 27, 35lcvnbtwn2 34140 . 2 (𝜑 → (𝑈 𝑄) = (𝑈 𝑅))
4015, 39sseqtr4d 3640 1 (𝜑𝑅 ⊆ (𝑈 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  cin 3571  wss 3572  wpss 3573  {csn 4175   class class class wbr 4651  cfv 5886  (class class class)co 6647  0gc0g 16094  SubGrpcsubg 17582  LSSumclsm 18043  LModclmod 18857  LSubSpclss 18926  LVecclvec 19096  LSAtomsclsa 34087  L clcv 34131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-0g 16096  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-subg 17585  df-cntz 17744  df-oppg 17770  df-lsm 18045  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-oppr 18617  df-dvdsr 18635  df-unit 18636  df-invr 18666  df-drng 18743  df-lmod 18859  df-lss 18927  df-lsp 18966  df-lvec 19097  df-lsatoms 34089  df-lcv 34132
This theorem is referenced by:  lsatexch1  34159
  Copyright terms: Public domain W3C validator