Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn Structured version   Visualization version   GIF version

Theorem lsatlspsn 34598
 Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
lsatlspsn.w (𝜑𝑊 ∈ LMod)
lsatlspsn.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lsatlspsn (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatlspsn.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 eqid 2651 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
3 sneq 4220 . . . . . 6 (𝑣 = 𝑋 → {𝑣} = {𝑋})
43fveq2d 6233 . . . . 5 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
54eqeq2d 2661 . . . 4 (𝑣 = 𝑋 → ((𝑁‘{𝑋}) = (𝑁‘{𝑣}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑋})))
65rspcev 3340 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
71, 2, 6sylancl 695 . 2 (𝜑 → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
8 lsatlspsn.w . . 3 (𝜑𝑊 ∈ LMod)
9 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
10 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
11 lsatset.z . . . 4 0 = (0g𝑊)
12 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
139, 10, 11, 12islsat 34596 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
148, 13syl 17 . 2 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
157, 14mpbird 247 1 (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030  ∃wrex 2942   ∖ cdif 3604  {csn 4210  ‘cfv 5926  Basecbs 15904  0gc0g 16147  LModclmod 18911  LSpanclspn 19019  LSAtomsclsa 34579 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-lsatoms 34581 This theorem is referenced by:  lsatspn0  34605  dvh4dimlem  37049  dochsnshp  37059  lclkrlem2a  37113  lclkrlem2c  37115  lclkrlem2e  37117  lcfrlem20  37168  mapdrvallem2  37251  mapdpglem20  37297  mapdpglem30a  37301  mapdpglem30b  37302  hdmaprnlem3eN  37467  hdmaprnlem16N  37471
 Copyright terms: Public domain W3C validator