Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatspn0 Structured version   Visualization version   GIF version

Theorem lsatspn0 34605
 Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
lsatspn0.v 𝑉 = (Base‘𝑊)
lsatspn0.n 𝑁 = (LSpan‘𝑊)
lsatspn0.o 0 = (0g𝑊)
lsatspn0.a 𝐴 = (LSAtoms‘𝑊)
isateln0.w (𝜑𝑊 ∈ LMod)
isateln0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsatspn0 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))

Proof of Theorem lsatspn0
StepHypRef Expression
1 lsatspn0.o . . . 4 0 = (0g𝑊)
2 lsatspn0.a . . . 4 𝐴 = (LSAtoms‘𝑊)
3 isateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
43adantr 480 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑊 ∈ LMod)
5 simpr 476 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ∈ 𝐴)
61, 2, 4, 5lsatn0 34604 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ≠ { 0 })
7 sneq 4220 . . . . . . . 8 (𝑋 = 0 → {𝑋} = { 0 })
87fveq2d 6233 . . . . . . 7 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
98adantl 481 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
104adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod)
11 lsatspn0.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
121, 11lspsn0 19056 . . . . . . 7 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
1310, 12syl 17 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{ 0 }) = { 0 })
149, 13eqtrd 2685 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1514ex 449 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 }))
1615necon3d 2844 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → ((𝑁‘{𝑋}) ≠ { 0 } → 𝑋0 ))
176, 16mpd 15 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑋0 )
18 lsatspn0.v . . 3 𝑉 = (Base‘𝑊)
193adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LMod)
20 isateln0.x . . . . 5 (𝜑𝑋𝑉)
2120adantr 480 . . . 4 ((𝜑𝑋0 ) → 𝑋𝑉)
22 simpr 476 . . . 4 ((𝜑𝑋0 ) → 𝑋0 )
23 eldifsn 4350 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2421, 22, 23sylanbrc 699 . . 3 ((𝜑𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2518, 11, 1, 2, 19, 24lsatlspsn 34598 . 2 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
2617, 25impbida 895 1 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∖ cdif 3604  {csn 4210  ‘cfv 5926  Basecbs 15904  0gc0g 16147  LModclmod 18911  LSpanclspn 19019  LSAtomsclsa 34579 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-mgp 18536  df-ring 18595  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lsatoms 34581 This theorem is referenced by:  lsator0sp  34606  lcfl8b  37110  mapdpglem5N  37283  mapdpglem30a  37301  mapdpglem30b  37302
 Copyright terms: Public domain W3C validator