Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Visualization version   GIF version

Theorem lshpcmp 33089
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h 𝐻 = (LSHyp‘𝑊)
lshpcmp.w (𝜑𝑊 ∈ LVec)
lshpcmp.t (𝜑𝑇𝐻)
lshpcmp.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lshpcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 lshpcmp.h . . . . 5 𝐻 = (LSHyp‘𝑊)
3 lshpcmp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 18873 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lshpcmp.u . . . . 5 (𝜑𝑈𝐻)
71, 2, 5, 6lshpne 33083 . . . 4 (𝜑𝑈 ≠ (Base‘𝑊))
8 eqid 2609 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
98, 2, 5, 6lshplss 33082 . . . . . . 7 (𝜑𝑈 ∈ (LSubSp‘𝑊))
101, 8lssss 18704 . . . . . . 7 (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
119, 10syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝑊))
12 lshpcmp.t . . . . . . . . 9 (𝜑𝑇𝐻)
13 eqid 2609 . . . . . . . . . 10 (LSpan‘𝑊) = (LSpan‘𝑊)
14 eqid 2609 . . . . . . . . . 10 (LSSum‘𝑊) = (LSSum‘𝑊)
151, 13, 8, 14, 2, 5islshpsm 33081 . . . . . . . . 9 (𝜑 → (𝑇𝐻 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))))
1612, 15mpbid 220 . . . . . . . 8 (𝜑 → (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊)))
1716simp3d 1067 . . . . . . 7 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
18 id 22 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝜑𝑣 ∈ (Base‘𝑊)))
1918adantrr 748 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) → (𝜑𝑣 ∈ (Base‘𝑊)))
203adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
218, 2, 5, 12lshplss 33082 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (LSubSp‘𝑊))
2221adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊))
239adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
24 simpr 475 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
251, 8, 13, 14, 20, 22, 23, 24lsmcv 18908 . . . . . . . . . . . 12 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
2619, 25syl3an1 1350 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
27263expia 1258 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))))
28 simplrr 796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
2928sseq2d 3595 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 ⊆ (Base‘𝑊)))
3028eqeq2d 2619 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 = (Base‘𝑊)))
3127, 29, 303imtr3d 280 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))
3231exp42 636 . . . . . . . 8 (𝜑 → (𝑣 ∈ (Base‘𝑊) → ((𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))))
3332rexlimdv 3011 . . . . . . 7 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))))
3417, 33mpd 15 . . . . . 6 (𝜑 → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))
3511, 34mpid 42 . . . . 5 (𝜑 → (𝑇𝑈𝑈 = (Base‘𝑊)))
3635necon3ad 2794 . . . 4 (𝜑 → (𝑈 ≠ (Base‘𝑊) → ¬ 𝑇𝑈))
377, 36mpd 15 . . 3 (𝜑 → ¬ 𝑇𝑈)
38 df-pss 3555 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈𝑇𝑈))
3938simplbi2 652 . . . 4 (𝑇𝑈 → (𝑇𝑈𝑇𝑈))
4039necon1bd 2799 . . 3 (𝑇𝑈 → (¬ 𝑇𝑈𝑇 = 𝑈))
4137, 40syl5com 31 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
42 eqimss 3619 . 2 (𝑇 = 𝑈𝑇𝑈)
4341, 42impbid1 213 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896  wss 3539  wpss 3540  {csn 4124  cfv 5790  (class class class)co 6527  Basecbs 15641  LSSumclsm 17818  LModclmod 18632  LSubSpclss 18699  LSpanclspn 18738  LVecclvec 18869  LSHypclsh 33076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-subg 17360  df-cntz 17519  df-lsm 17820  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-oppr 18392  df-dvdsr 18410  df-unit 18411  df-invr 18441  df-drng 18518  df-lmod 18634  df-lss 18700  df-lsp 18739  df-lvec 18870  df-lshyp 33078
This theorem is referenced by:  lshpinN  33090  lfl1dim  33222  lfl1dim2N  33223  lkrpssN  33264  dochlkr  35488  dochsatshpb  35555  lcfl9a  35608  lclkrlem2e  35614  lclkrlem2g  35616  lclkrlem2s  35628  lcfrlem25  35670  lcfrlem35  35680  hdmaplkr  36019
  Copyright terms: Public domain W3C validator