Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrcl Structured version   Visualization version   GIF version

Theorem lshpkrcl 34222
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lshpkrcl (𝜑𝐺𝐹)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkrcl
Dummy variables 𝑎 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkr.a . . . . 5 + = (+g𝑊)
3 lshpkr.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkr.p . . . . 5 = (LSSum‘𝑊)
5 lshpkr.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
76adantr 481 . . . . 5 ((𝜑𝑎𝑉) → 𝑊 ∈ LVec)
8 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
98adantr 481 . . . . 5 ((𝜑𝑎𝑉) → 𝑈𝐻)
10 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
1110adantr 481 . . . . 5 ((𝜑𝑎𝑉) → 𝑍𝑉)
12 simpr 477 . . . . 5 ((𝜑𝑎𝑉) → 𝑎𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 481 . . . . 5 ((𝜑𝑎𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkr.d . . . . 5 𝐷 = (Scalar‘𝑊)
16 lshpkr.k . . . . 5 𝐾 = (Base‘𝐷)
17 lshpkr.t . . . . 5 · = ( ·𝑠𝑊)
181, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17lshpsmreu 34215 . . . 4 ((𝜑𝑎𝑉) → ∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))
19 riotacl 6610 . . . 4 (∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
2018, 19syl 17 . . 3 ((𝜑𝑎𝑉) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
21 lshpkr.g . . . 4 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
22 eqeq1 2624 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2322rexbidv 3048 . . . . . 6 (𝑥 = 𝑎 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2423riotabidv 6598 . . . . 5 (𝑥 = 𝑎 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2524cbvmptv 4741 . . . 4 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2621, 25eqtri 2642 . . 3 𝐺 = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2720, 26fmptd 6371 . 2 (𝜑𝐺:𝑉𝐾)
28 eqid 2620 . . . 4 (0g𝐷) = (0g𝐷)
291, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21lshpkrlem6 34221 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
3029ralrimivvva 2969 . 2 (𝜑 → ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
31 eqid 2620 . . . 4 (+g𝐷) = (+g𝐷)
32 eqid 2620 . . . 4 (.r𝐷) = (.r𝐷)
33 lshpkr.f . . . 4 𝐹 = (LFnl‘𝑊)
341, 2, 15, 17, 16, 31, 32, 33islfl 34166 . . 3 (𝑊 ∈ LVec → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
356, 34syl 17 . 2 (𝜑 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
3627, 30, 35mpbir2and 956 1 (𝜑𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wral 2909  wrex 2910  ∃!wreu 2911  {csn 4168  cmpt 4720  wf 5872  cfv 5876  crio 6595  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  .rcmulr 15923  Scalarcsca 15925   ·𝑠 cvsca 15926  0gc0g 16081  LSSumclsm 18030  LSpanclspn 18952  LVecclvec 19083  LSHypclsh 34081  LFnlclfn 34163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-cntz 17731  df-lsm 18032  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-drng 18730  df-lmod 18846  df-lss 18914  df-lsp 18953  df-lvec 19084  df-lshyp 34083  df-lfl 34164
This theorem is referenced by:  lshpkr  34223  lshpkrex  34224  dochflcl  36583
  Copyright terms: Public domain W3C validator