Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem2 Structured version   Visualization version   GIF version

Theorem lshpkrlem2 36241
Description: Lemma for lshpkrex 36248. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem2 (𝜑 → (𝐺𝑋) ∈ 𝐾)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)   0 (𝑥,𝑦)

Proof of Theorem lshpkrlem2
StepHypRef Expression
1 lshpkrlem.x . . 3 (𝜑𝑋𝑉)
2 eqeq1 2825 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
32rexbidv 3297 . . . . 5 (𝑥 = 𝑋 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
43riotabidv 7110 . . . 4 (𝑥 = 𝑋 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
5 lshpkrlem.g . . . 4 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
6 riotaex 7112 . . . 4 (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V
74, 5, 6fvmpt 6763 . . 3 (𝑋𝑉 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
81, 7syl 17 . 2 (𝜑 → (𝐺𝑋) = (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))))
9 lshpkrlem.v . . . 4 𝑉 = (Base‘𝑊)
10 lshpkrlem.a . . . 4 + = (+g𝑊)
11 lshpkrlem.n . . . 4 𝑁 = (LSpan‘𝑊)
12 lshpkrlem.p . . . 4 = (LSSum‘𝑊)
13 lshpkrlem.h . . . 4 𝐻 = (LSHyp‘𝑊)
14 lshpkrlem.w . . . 4 (𝜑𝑊 ∈ LVec)
15 lshpkrlem.u . . . 4 (𝜑𝑈𝐻)
16 lshpkrlem.z . . . 4 (𝜑𝑍𝑉)
17 lshpkrlem.e . . . 4 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
18 lshpkrlem.d . . . 4 𝐷 = (Scalar‘𝑊)
19 lshpkrlem.k . . . 4 𝐾 = (Base‘𝐷)
20 lshpkrlem.t . . . 4 · = ( ·𝑠𝑊)
219, 10, 11, 12, 13, 14, 15, 16, 1, 17, 18, 19, 20lshpsmreu 36239 . . 3 (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
22 riotacl 7125 . . 3 (∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) → (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
2321, 22syl 17 . 2 (𝜑 → (𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
248, 23eqeltrd 2913 1 (𝜑 → (𝐺𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wrex 3139  ∃!wreu 3140  {csn 4561  cmpt 5139  cfv 6350  crio 7107  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  LSSumclsm 18753  LSpanclspn 19737  LVecclvec 19868  LSHypclsh 36105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lshyp 36107
This theorem is referenced by:  lshpkrlem4  36243  lshpkrlem5  36244
  Copyright terms: Public domain W3C validator