Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem5 Structured version   Visualization version   GIF version

Theorem lshpkrlem5 33902
Description: Lemma for lshpkrex 33906. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑧,𝑙, +   𝐺,𝑙,𝑧   𝐾,𝑙   𝑈,𝑙,𝑧   𝑋,𝑙,𝑧   𝑍,𝑙,𝑧,𝑘,𝑥,𝑦   · ,𝑙,𝑧   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑧,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑧,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem5
StepHypRef Expression
1 lshpkrlem.a . . 3 + = (+g𝑊)
2 eqid 2621 . . 3 (0g𝑊) = (0g𝑊)
3 eqid 2621 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
4 simp11 1089 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝜑)
5 lshpkrlem.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
64, 5syl 17 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ LVec)
7 lveclmod 19028 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ LMod)
9 eqid 2621 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
109lsssssubg 18880 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
118, 10syl 17 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
12 lshpkrlem.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
135, 7syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
14 lshpkrlem.u . . . . . 6 (𝜑𝑈𝐻)
159, 12, 13, 14lshplss 33769 . . . . 5 (𝜑𝑈 ∈ (LSubSp‘𝑊))
164, 15syl 17 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ∈ (LSubSp‘𝑊))
1711, 16sseldd 3585 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ∈ (SubGrp‘𝑊))
18 lshpkrlem.z . . . . . 6 (𝜑𝑍𝑉)
194, 18syl 17 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑍𝑉)
20 lshpkrlem.v . . . . . 6 𝑉 = (Base‘𝑊)
21 lshpkrlem.n . . . . . 6 𝑁 = (LSpan‘𝑊)
2220, 9, 21lspsncl 18899 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
238, 19, 22syl2anc 692 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2411, 23sseldd 3585 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
25 lshpkrlem.p . . . . 5 = (LSSum‘𝑊)
26 lshpkrlem.e . . . . 5 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2720, 2, 21, 25, 12, 5, 14, 18, 26lshpdisj 33775 . . . 4 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
284, 27syl 17 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
29 lmodabl 18834 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
308, 29syl 17 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑊 ∈ Abel)
313, 30, 17, 24ablcntzd 18184 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
32 simp23r 1181 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑧𝑈)
33 simp12 1090 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑙𝐾)
34 simp22 1093 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑈)
35 lshpkrlem.d . . . . . 6 𝐷 = (Scalar‘𝑊)
36 lshpkrlem.t . . . . . 6 · = ( ·𝑠𝑊)
37 lshpkrlem.k . . . . . 6 𝐾 = (Base‘𝐷)
3835, 36, 37, 9lssvscl 18877 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ (𝑙𝐾𝑟𝑈)) → (𝑙 · 𝑟) ∈ 𝑈)
398, 16, 33, 34, 38syl22anc 1324 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙 · 𝑟) ∈ 𝑈)
40 simp23l 1180 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑈)
411, 9lssvacl 18876 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) ∧ ((𝑙 · 𝑟) ∈ 𝑈𝑠𝑈)) → ((𝑙 · 𝑟) + 𝑠) ∈ 𝑈)
428, 16, 39, 40, 41syl22anc 1324 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑟) + 𝑠) ∈ 𝑈)
43 simp13 1091 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢𝑉)
4420, 35, 36, 37lmodvscl 18804 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑢𝑉) → (𝑙 · 𝑢) ∈ 𝑉)
458, 33, 43, 44syl3anc 1323 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙 · 𝑢) ∈ 𝑉)
46 simp21 1092 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣𝑉)
4720, 1lmodvacl 18801 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑙 · 𝑢) ∈ 𝑉𝑣𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
488, 45, 46, 47syl3anc 1323 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
495adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑊 ∈ LVec)
5014adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑈𝐻)
5118adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → 𝑍𝑉)
52 simpr 477 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉)
5326adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
54 lshpkrlem.o . . . . . 6 0 = (0g𝐷)
55 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
5620, 1, 21, 25, 12, 49, 50, 51, 52, 53, 35, 37, 36, 54, 55lshpkrlem2 33899 . . . . 5 ((𝜑 ∧ ((𝑙 · 𝑢) + 𝑣) ∈ 𝑉) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) ∈ 𝐾)
574, 48, 56syl2anc 692 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) ∈ 𝐾)
5820, 36, 35, 37, 21, 8, 57, 19lspsneli 18923 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) ∈ (𝑁‘{𝑍}))
595adantr 481 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
6014adantr 481 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑈𝐻)
6118adantr 481 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑍𝑉)
62 simpr 477 . . . . . . . 8 ((𝜑𝑢𝑉) → 𝑢𝑉)
6326adantr 481 . . . . . . . 8 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
6420, 1, 21, 25, 12, 59, 60, 61, 62, 63, 35, 37, 36, 54, 55lshpkrlem2 33899 . . . . . . 7 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
654, 43, 64syl2anc 692 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺𝑢) ∈ 𝐾)
66 eqid 2621 . . . . . . 7 (.r𝐷) = (.r𝐷)
6735, 37, 66lmodmcl 18799 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
688, 33, 65, 67syl3anc 1323 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
695adantr 481 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
7014adantr 481 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈𝐻)
7118adantr 481 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑍𝑉)
72 simpr 477 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
7326adantr 481 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7420, 1, 21, 25, 12, 69, 70, 71, 72, 73, 35, 37, 36, 54, 55lshpkrlem2 33899 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
754, 46, 74syl2anc 692 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺𝑣) ∈ 𝐾)
76 eqid 2621 . . . . . 6 (+g𝐷) = (+g𝐷)
7735, 37, 76lmodacl 18798 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾) → ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) ∈ 𝐾)
788, 68, 75, 77syl3anc 1323 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) ∈ 𝐾)
7920, 36, 35, 37, 21, 8, 78, 19lspsneli 18923 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) ∈ (𝑁‘{𝑍}))
80 simp33 1097 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))
81 simp1 1059 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝜑𝑙𝐾𝑢𝑉))
8220, 9lssel 18860 . . . . . 6 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑟𝑈) → 𝑟𝑉)
8316, 34, 82syl2anc 692 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑟𝑉)
8420, 9lssel 18860 . . . . . 6 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑈) → 𝑠𝑉)
8516, 40, 84syl2anc 692 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑠𝑉)
86 simp31 1095 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
87 simp32 1096 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
88 lshpkrlem.x . . . . . 6 (𝜑𝑋𝑉)
8920, 1, 21, 25, 12, 5, 14, 18, 88, 26, 35, 37, 36, 54, 55lshpkrlem4 33901 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
9081, 46, 83, 85, 86, 87, 89syl132anc 1341 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
9180, 90eqtr3d 2657 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
921, 2, 3, 17, 24, 28, 31, 32, 42, 58, 79, 91subgdisj2 18029 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍))
9320, 21, 25, 12, 2, 13, 14, 18, 26lshpne0 33774 . . . 4 (𝜑𝑍 ≠ (0g𝑊))
944, 93syl 17 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → 𝑍 ≠ (0g𝑊))
9520, 36, 35, 37, 2, 6, 57, 78, 19, 94lvecvscan2 19034 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) ↔ (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣))))
9692, 95mpbid 222 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑈 ∧ (𝑠𝑈𝑧𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cin 3555  wss 3556  {csn 4150  cmpt 4675  cfv 5849  crio 6567  (class class class)co 6607  Basecbs 15784  +gcplusg 15865  .rcmulr 15866  Scalarcsca 15868   ·𝑠 cvsca 15869  0gc0g 16024  SubGrpcsubg 17512  Cntzccntz 17672  LSSumclsm 17973  Abelcabl 18118  LModclmod 18787  LSubSpclss 18854  LSpanclspn 18893  LVecclvec 19024  LSHypclsh 33763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-subg 17515  df-cntz 17674  df-lsm 17975  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-drng 18673  df-lmod 18789  df-lss 18855  df-lsp 18894  df-lvec 19025  df-lshyp 33765
This theorem is referenced by:  lshpkrlem6  33903
  Copyright terms: Public domain W3C validator