Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset Structured version   Visualization version   GIF version

Theorem lshpset 33082
Description: The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Base‘𝑊)
lshpset.n 𝑁 = (LSpan‘𝑊)
lshpset.s 𝑆 = (LSubSp‘𝑊)
lshpset.h 𝐻 = (LSHyp‘𝑊)
Assertion
Ref Expression
lshpset (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Distinct variable groups:   𝑆,𝑠   𝑣,𝑉   𝑣,𝑠,𝑊
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣,𝑠)   𝑁(𝑣,𝑠)   𝑉(𝑠)   𝑋(𝑣,𝑠)

Proof of Theorem lshpset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lshpset.h . 2 𝐻 = (LSHyp‘𝑊)
2 elex 3180 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6084 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
4 lshpset.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
53, 4syl6eqr 2657 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
6 fveq2 6084 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
7 lshpset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
86, 7syl6eqr 2657 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
98neeq2d 2837 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ≠ (Base‘𝑤) ↔ 𝑠𝑉))
10 fveq2 6084 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
11 lshpset.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1210, 11syl6eqr 2657 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1312fveq1d 6086 . . . . . . . 8 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (𝑁‘(𝑠 ∪ {𝑣})))
1413, 8eqeq12d 2620 . . . . . . 7 (𝑤 = 𝑊 → (((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
158, 14rexeqbidv 3125 . . . . . 6 (𝑤 = 𝑊 → (∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
169, 15anbi12d 742 . . . . 5 (𝑤 = 𝑊 → ((𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) ↔ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)))
175, 16rabeqbidv 3163 . . . 4 (𝑤 = 𝑊 → {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
18 df-lshyp 33081 . . . 4 LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
19 fvex 6094 . . . . . 6 (LSubSp‘𝑊) ∈ V
204, 19eqeltri 2679 . . . . 5 𝑆 ∈ V
2120rabex 4731 . . . 4 {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ∈ V
2217, 18, 21fvmpt 6172 . . 3 (𝑊 ∈ V → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
232, 22syl 17 . 2 (𝑊𝑋 → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
241, 23syl5eq 2651 1 (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  wrex 2892  {crab 2895  Vcvv 3168  cun 3533  {csn 4120  cfv 5786  Basecbs 15637  LSubSpclss 18695  LSpanclspn 18734  LSHypclsh 33079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pr 4824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-iota 5750  df-fun 5788  df-fv 5794  df-lshyp 33081
This theorem is referenced by:  islshp  33083
  Copyright terms: Public domain W3C validator