Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset2N Structured version   Visualization version   GIF version

Theorem lshpset2N 36257
Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpset2N (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Distinct variable groups:   𝑔,𝐹   𝑔,𝑠,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐷(𝑔,𝑠)   𝐹(𝑠)   𝐾(𝑠)   𝑉(𝑠)   0 (𝑔,𝑠)

Proof of Theorem lshpset2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
2 lshpset2.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lshpset2.k . . . . . 6 𝐾 = (LKer‘𝑊)
41, 2, 3lshpkrex 36256 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑠)
5 eleq1 2902 . . . . . . . . . . . 12 ((𝐾𝑔) = 𝑠 → ((𝐾𝑔) ∈ 𝐻𝑠𝐻))
65biimparc 482 . . . . . . . . . . 11 ((𝑠𝐻 ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
76adantll 712 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
87adantlr 713 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
9 lshpset2.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
10 lshpset2.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
11 lshpset2.z . . . . . . . . . 10 0 = (0g𝐷)
12 simplll 773 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑊 ∈ LVec)
13 simplr 767 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔𝐹)
149, 10, 11, 1, 2, 3, 12, 13lkrshp3 36244 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → ((𝐾𝑔) ∈ 𝐻𝑔 ≠ (𝑉 × { 0 })))
158, 14mpbid 234 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 }))
1615ex 415 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑔 ≠ (𝑉 × { 0 })))
17 eqimss2 4026 . . . . . . . . 9 ((𝐾𝑔) = 𝑠𝑠 ⊆ (𝐾𝑔))
18 eqimss 4025 . . . . . . . . 9 ((𝐾𝑔) = 𝑠 → (𝐾𝑔) ⊆ 𝑠)
1917, 18eqssd 3986 . . . . . . . 8 ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔))
2019a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔)))
2116, 20jcad 515 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
2221reximdva 3276 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → (∃𝑔𝐹 (𝐾𝑔) = 𝑠 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
234, 22mpd 15 . . . 4 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)))
2423ex 415 . . 3 (𝑊 ∈ LVec → (𝑠𝐻 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
259, 10, 11, 1, 2, 3lkrshp 36243 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × { 0 })) → (𝐾𝑔) ∈ 𝐻)
26253adant3r 1177 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝐾𝑔) ∈ 𝐻)
27 eqid 2823 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
28 eqid 2823 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
299, 27, 28, 1islshp 36117 . . . . . . . 8 (𝑊 ∈ LVec → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
30293ad2ant1 1129 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3126, 30mpbid 234 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
32 eleq1 2902 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾𝑔) ∈ (LSubSp‘𝑊)))
33 neeq1 3080 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠𝑉 ↔ (𝐾𝑔) ≠ 𝑉))
34 uneq1 4134 . . . . . . . . . . 11 (𝑠 = (𝐾𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾𝑔) ∪ {𝑣}))
3534fveqeq2d 6680 . . . . . . . . . 10 (𝑠 = (𝐾𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3635rexbidv 3299 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3732, 33, 363anbi123d 1432 . . . . . . . 8 (𝑠 = (𝐾𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3837adantl 484 . . . . . . 7 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
39383ad2ant3 1131 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
4031, 39mpbird 259 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))
4140rexlimdv3a 3288 . . . 4 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
429, 27, 28, 1islshp 36117 . . . 4 (𝑊 ∈ LVec → (𝑠𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
4341, 42sylibrd 261 . . 3 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → 𝑠𝐻))
4424, 43impbid 214 . 2 (𝑊 ∈ LVec → (𝑠𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
4544abbi2dv 2952 1 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wrex 3141  cun 3936  {csn 4569   × cxp 5555  cfv 6357  Basecbs 16485  Scalarcsca 16570  0gc0g 16715  LSubSpclss 19705  LSpanclspn 19745  LVecclvec 19876  LSHypclsh 36113  LFnlclfn 36195  LKerclk 36223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lshyp 36115  df-lfl 36196  df-lkr 36224
This theorem is referenced by:  islshpkrN  36258
  Copyright terms: Public domain W3C validator