Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset2N Structured version   Visualization version   GIF version

Theorem lshpset2N 33886
Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpset2N (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Distinct variable groups:   𝑔,𝐹   𝑔,𝑠,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐷(𝑔,𝑠)   𝐹(𝑠)   𝐾(𝑠)   𝑉(𝑠)   0 (𝑔,𝑠)

Proof of Theorem lshpset2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
2 lshpset2.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lshpset2.k . . . . . 6 𝐾 = (LKer‘𝑊)
41, 2, 3lshpkrex 33885 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑠)
5 eleq1 2686 . . . . . . . . . . . 12 ((𝐾𝑔) = 𝑠 → ((𝐾𝑔) ∈ 𝐻𝑠𝐻))
65biimparc 504 . . . . . . . . . . 11 ((𝑠𝐻 ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
76adantll 749 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
87adantlr 750 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
9 lshpset2.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
10 lshpset2.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
11 lshpset2.z . . . . . . . . . 10 0 = (0g𝐷)
12 simplll 797 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑊 ∈ LVec)
13 simplr 791 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔𝐹)
149, 10, 11, 1, 2, 3, 12, 13lkrshp3 33873 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → ((𝐾𝑔) ∈ 𝐻𝑔 ≠ (𝑉 × { 0 })))
158, 14mpbid 222 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 }))
1615ex 450 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑔 ≠ (𝑉 × { 0 })))
17 eqimss2 3637 . . . . . . . . 9 ((𝐾𝑔) = 𝑠𝑠 ⊆ (𝐾𝑔))
18 eqimss 3636 . . . . . . . . 9 ((𝐾𝑔) = 𝑠 → (𝐾𝑔) ⊆ 𝑠)
1917, 18eqssd 3600 . . . . . . . 8 ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔))
2019a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔)))
2116, 20jcad 555 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
2221reximdva 3011 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → (∃𝑔𝐹 (𝐾𝑔) = 𝑠 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
234, 22mpd 15 . . . 4 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)))
2423ex 450 . . 3 (𝑊 ∈ LVec → (𝑠𝐻 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
259, 10, 11, 1, 2, 3lkrshp 33872 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × { 0 })) → (𝐾𝑔) ∈ 𝐻)
26253adant3r 1320 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝐾𝑔) ∈ 𝐻)
27 eqid 2621 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
28 eqid 2621 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
299, 27, 28, 1islshp 33746 . . . . . . . 8 (𝑊 ∈ LVec → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
30293ad2ant1 1080 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3126, 30mpbid 222 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
32 eleq1 2686 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾𝑔) ∈ (LSubSp‘𝑊)))
33 neeq1 2852 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠𝑉 ↔ (𝐾𝑔) ≠ 𝑉))
34 uneq1 3738 . . . . . . . . . . . 12 (𝑠 = (𝐾𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾𝑔) ∪ {𝑣}))
3534fveq2d 6152 . . . . . . . . . . 11 (𝑠 = (𝐾𝑔) → ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})))
3635eqeq1d 2623 . . . . . . . . . 10 (𝑠 = (𝐾𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3736rexbidv 3045 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3832, 33, 373anbi123d 1396 . . . . . . . 8 (𝑠 = (𝐾𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3938adantl 482 . . . . . . 7 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
40393ad2ant3 1082 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
4131, 40mpbird 247 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))
4241rexlimdv3a 3026 . . . 4 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
439, 27, 28, 1islshp 33746 . . . 4 (𝑊 ∈ LVec → (𝑠𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
4442, 43sylibrd 249 . . 3 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → 𝑠𝐻))
4524, 44impbid 202 . 2 (𝑊 ∈ LVec → (𝑠𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
4645abbi2dv 2739 1 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wne 2790  wrex 2908  cun 3553  {csn 4148   × cxp 5072  cfv 5847  Basecbs 15781  Scalarcsca 15865  0gc0g 16021  LSubSpclss 18851  LSpanclspn 18890  LVecclvec 19021  LSHypclsh 33742  LFnlclfn 33824  LKerclk 33852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022  df-lshyp 33744  df-lfl 33825  df-lkr 33853
This theorem is referenced by:  islshpkrN  33887
  Copyright terms: Public domain W3C validator