MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcom Structured version   Visualization version   GIF version

Theorem lsmcom 18972
Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmcom.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcom ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcom
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Abel)
2 eqid 2821 . . 3 (Base‘𝐺) = (Base‘𝐺)
32subgss 18274 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
42subgss 18274 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5 lsmcom.s . . 3 = (LSSum‘𝐺)
62, 5lsmcomx 18970 . 2 ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
71, 3, 4, 6syl3an 1156 1 ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  wss 3936  cfv 6350  (class class class)co 7150  Basecbs 16477  SubGrpcsubg 18267  LSSumclsm 18753  Abelcabl 18901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-subg 18270  df-lsm 18755  df-cmn 18902  df-abl 18903
This theorem is referenced by:  lsm4  18974  pgpfac1lem4  19194  pgpfaclem1  19197  lspprabs  19861  ocvpj  20855  lcvexchlem3  36166  lcvexchlem4  36167  lcvexchlem5  36168  lsatcvatlem  36179  lsatcvat  36180  lsatcvat3  36182  l1cvat  36185  dia2dimlem5  38198  dihjatc3  38443  dihmeetlem9N  38445  dihjat  38553  lclkrlem2b  38638
  Copyright terms: Public domain W3C validator